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SCIENTIFIC REPORT: 

AFOSR, F49620-96-l-0481(1996-97) 

■RESEARCH ON RELATIONS BETWEEN WAVELETS AND OPERATORS- 

BY XINGDE DAI 

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE 

During the period of the support, I have done some work related with 
my research, education of graduate students, and application of my results 
in industry which will be illustrated in this report. I will describe this in four 
sections as follows: 

1. Some Results and Publications. 

2. Ph.D. Thesis directed. 

3. Conferences and Presentations. 

4. Transition to Industry. 

1. Some Results and Publications. 

(a) We (this principal investigator and his student Mr. Rufeng Liang) 
obtain the characterization of wavelet multipliers. This result was 
obtained independently (same time) by David Larson and his stu- 
dent Mr. Qing Gu. Here is the statement of the theorem: 

Theorem 1 A measurable unimodular function u(s) has thejprop- 
erty that for every orthogonal wavelet tp, the function v(s)ip(s) is 
the Fourier Transform of an orthogonal wavelet if and only if the 
function ~f is 2n-periodic. 
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Guido Weiss showed that the word "unimodular" can be deleted 
from the theorem. The function v is called a wavelet multiplier, 

(b) We obtain the characterization of phases of MRA wavelets. This 
result states as the following theorem. 

Theorem 2 Let V> be an orthogonal wavelet with an MRA. Let TJ 

be a function defined by 

fj(s) = e*\il>{s)\. 

Then r\ is an orthogonal wavelet and there is a wavelet multiplier 

v(s) such that 
${s) = K5)*?(s) 

(c) We obtain the path-connectness of MRA wavelets. This result was 
obtained by Deguang Han, David Larson and Shijin Lu during the 
same week independently by using different techniques. The result 
state as the following theorem. 

Theorem 3  The set of MRA wavelets is path connected in L2(R}- 
norm. 

(d) With David Larson and Darrin Speegle, this investigator obtains 
some new results on wavelets in Rn 

The results in a),b) and c) are collected in the following paper: 

• (The Wutam Consortium,) Basic Properties of Wavelets. The 
Wutam Consortium is a group of people worked on the problems 
which is led by Guido Weiss and David Larson. The paper will 
appear in the Journal of Fourier Analysis and Applications. 

The results in d) are materials in two papers: 

• (with David Larson and Darrin Speegle) Wavelet Sets in Rn, Jour- 
nal of Fourier Analysis and Applications, pp. 451-456, Vol 3, No 

4, 1997 



• (with David Larson and Darrin Speegle) Wavelet Sets in R» II 
Contemporary Mathematics, to appear. 

2. Ph.D. Thesis directed. 

Mr. Rufeng Liang enrolled into our graduate school in spring 1996 
Me took two of my courses on wavelets. He passed the preliminary 
exam in August, 1996 and passed the qualify exam and language exam 
(French) m spring 1998. Mr. Liang is writing a Ph.D. thesis. He has 
developed deep results in wavelet theory under the direction of this 
principal investigator. The results in a)-c) in the previous section are 

ms 0f
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theS1S- Mr- ^ianS exPects to defense his thesis in summer 
1998. Mr. Liang received an Research Assistantship during spring and 
fa   semesters, 1997.   (Spring support by AFOSR, F49620-96-1-0481 
fall support by DOE DE-AC22-94PC91008(BDM-OK)). 

3. Conferences and Presentations. 

During summer 1997, this principal investigator was invited to give a 
talk at the International Conference On Operator Algebras and Op- 
erator Theory in Shanghai. He gave a presentation on the relation of 
wavelets and operators. During the trip he was invited to visit Bejing 
University, China. The following is the list of the author's talks during 
this supported (by AFOSR) period. g 

• An operator technique in wavelet theory, International Conference 
On Operator Algebras and Operator Theory in Shanghai, East 
China Normal University, July, 1997. A 20 minutes talk. Invited. 

. Wavelets and operator theory, Beijing University, Beijing, China, 
June 17, 1997. A one hour talk. Invited. 

• Applications of Wavelet Transforms in Petroleum Industry, BDM- 
OK, Battlesville, Oklahoma, May 5, 1997. 

• fZrnu^S iU WaVdet the°ry' Functi0^l Analysis conference at 
UNC-Charlotte, April, 1997. A 45 minutes talk. Invited. 



Transition to Industry. 
Innovative techniques and methodologies have been developed for up- 

1 C-rvoir properties using wavelet transforms. It h. beeris own 
that wavelet transform can be used to successfully upscale a 2-D reser 
voh permeability data under single and multiphase flow condition. 
More recently, we developed a 3-D mathematical model for upscalmg 
„servoproperties. It has also been demonstrated that wavelet trans- 
o m on« coupled with geostatistics and fractal analyse, may provide 
a tetter approach for constructing complex geologrcal models due to 
its unique ability to integrate multi-scale information. 

The current techniques using wavelet transform for reservoir studies 
lowed promising results under relatively ideal conditions. We^conduct 
research for developing reliable algorithms and practical too s.   The 
newtechniques and algorithnis will properly handle discontinuities in- 
cluding the faults, fractures, geological facies contrasts and bounta es 
under upscaling context.   In addition, we are developing a practical 
ITgorithm andUed theories for effectively and preciseh, upscatag 
3-D reservoir properties mapped in an irregular reservoir domain  We 
are devdoping a mathematical model to combine wavelet transform, 
^statistics, Id fractal analysis for efficiently 7*^ <«* <*J£ 
fous scales in the characterization of the reservoir. This >s a joint effort 
5 to principal investigator and BDM-OK. This research is currently 

support by a grant provided by DOE. 
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Basic properties of wavelets 

The Wutam Consortium 

Dedicated to Eugene Fabes 

September 12, 1997 

Abstract 

A wavelet multiplier is a function whose product with the Fourier 
transform of a wavelet is the Fourier transform of a wavelet. We 
characterize the wavelet multipliers, as well as the scaling function 
multipliers and low pass filter multipliers. We then prove that, if the 
set of all wavelet multipliers acts on the set of all MRA wavelets, 
the orbits are the sets of all MRA wavelets whose Fourier transforms 
have equal absolute values, and these are also equal to the sets of all 
MRA wavelets with the corresponding scaling functions having same 
absolute values of their Fourier transforms. As an application of these 
techniques we prove that the set of MRA wavelets is arcwise connected 
in I2(R). 

Foreword 

Two groups of collaborators, one led by Xingde Dai and David Larson and 
the other led by Eugenio Hernandez and Guido Weiss, became aware that 
they were involved in the study of wavelets and obtained results that had 
much in common, even though different methods were employed. Early in 
1996 we decided to exchange our ideas by holding meetings attended by 
us, our collaborators and students and by correspondence. This paper is 
what we hope is the first of a series of reports describing our joint results. 
Fourteen researchers are involved in this work. A few shorter notes describe 



more technical aspects of the work performed by different subgroups of this 
collection of fourteen researchers. At the end of this article, we shall describe 
the group that we call the "WUTAM CONSORTIUM". This is not the name 
of a Chinese city; it is the acronym for Washington University, Texas A 
&z M, the two institutions associated with each of us. 

1    Introduction 

We shall begin by examining the most basic facts about orthonormal wavelets 
on the real line R and show that there is a partition of this set that is partic- 
ularly useful for understanding wavelets and their properties. In particular, 
we will show that the wavelets, as a subset of the unit sphere in L2(R) have 
some unexpected connectivity properties; moreover, we will obtain several 
other properties of wavelets. In order to describe precisely the results we 
obtain, we must present appropriate definitions, notation and the facts that 
we assume the reader knows. 

By an orthonormal wavelet (or, simply, a wavelet) we mean a function 
ip G L2(R) such that the system {^(x)} = {2j'2i){2^x - k)}, where j 
and k range through the integers Z, forms an orthonormal basis of £2(R). 
There are two equations, involving the Fourier transform, ip, that completely 
characterize all wavelets. Let us agree to choos*e the following definition of 
the Fourier transform: 

T/>(0 = [ iP(x)e-iixdx 

considered as a Lebesgue integral when ip e Ll{R) n L2(R) and as a limit in 
the mean in the general case (see [11]). The characterization of wavelets is 
given by the following: 

Proposition 1.1 ip e £2(R) is an orthonormal wavelet if and only if\\ip\\2 > 
1 and the following are true: 

(i) E;6zl^(2J0|2 = l a.e.; 

fa) *,(0 s E~ o V>(2J"Otf(2>'(e + 2q7r)) = 0   a.e. 
when q is an odd integer. 



For a proof of this Proposition see chapter 7 of [6] where one can also find 
the appropriate references to G. Gripenberg and X. Wang who discovered 
this result independently. 

These two equations can be used for constructing wavelets (and we shall 
come back to this later on); however, there is an elegant method that is 
often used to construct a large class of wavelets known as the Multiresolution 
Analysis Method. A Multiresolution Analysis, or, simply, an MRA, is a 
sequence M = {Vj}, j e Z, of closed subspaces of L2(R) satisfying 

(1.2) Vj C Vj+1   for all    j € Z 

(1.3) / € Vj if and only if   /(2(-)) € VJ+l   for all    j e Z 

(1.4) VjezVj = I2(R) 

(1.5) There exists a function ip e VD such that {</?(• - k)}, k e Z, is an 
orthonormal basis for V0. 

It is not hard to show that properties (1.2), (1.3) and (1.5) imply 

(1-6) nj€ZVj = {0} 

It follows readily from these properties that the spaces Wj := Vj+1 n V--1, 
j e Z, are mutually orthogonal and their (orthogonal) direct sum equais 
L2(R) : 

L2(R) = ©^-. (i) 

It is clear from the above that a function ip € W0 such that {xjj(--k)}, k € Z, 
is an orthonormal basis for W0 is an orthonormal wavelet. The collection of 
all such wavelets will be referred to as the set ofMl wavelets associated with 
the MRA M = {Vj}. We shall also say that an orthonormal wavelet ip is 
an MRA wavelet if it is so associated with an MRA M — {Vj}. 

It is necessary that we review the well known explicit construction of 
such an MRA wavelet; this will allow us to make some observations that do 
not appear in the literature that form the basis for many of the results we 

' will present. Given an MRA M = {Vj}, let <p € V0 be a function satisfying 
(1.5). Such a function is called a scaling function associated with M. Since 
|y>(j) € V_! C V0 (from (1.2), (1.3) and (1.5)) we can express this function 
in terms of the orthonormal basis {</?(■ + k)}, k € Z : 



fceZ 
where 

\p (f) = E a^(* + *) , _ (2) 

\    r        x    

with £fc€z löfcl2 < oo and the convergence of the series in (2) is in the norm of 
L2(R). The Plancherel theorem shows that we can take the Fourier transform 
of both sides of equality (2) and obtain 

0(20 = 0(0 E ***** = 0(0^(0  , (3) 
*€Z 

where 

m(0 = E ***** 
fcez 

is a 27T periodic function in L2(T) = L2([-7r, TT)). This function m is uniquely 
determined by the scaling function <p via equation (3) and is called the low 
pass filter associated with <p. One can then show (see chapter 2 of [6]) that 
ip € L2(R) satisfying 

^(0 = e*/2™ (f + *)$(f) (4) 

is an orthonormal wavelet associated with M . More generally, if 

m = s(Qe«/2m(^+*y(^J (5) 

with s a unimodular (that is, |s(OI = 1 a.e.) 27r periodic measurable function, 
then ip is an orthonormal wavelet associated with M . In fact, Proposition 
2.13 in chapter 2 of [6] asserts ip is an orthonormal wavelet associated with 
M if and only if (5) is satisfied. It is often useful to know if we can find a 
scaling function <p € VQ such that the simpler equality (4) is true (that is if 
(5) with s(0 = 1 is satisfied). This is the content of the first theorem we 
shall prove: 

Theorem I. Suppose i/> is an orthonormal wavelet associated with an MRA 
■M = {Vj}, j € Z, then there exists a scaling function <p € Vö such that <p 
and tp satisfy (4) where m is the low pass filter determined by if . 



We have seen that the class of all wavelets can be characterized (see 
Proposition 1.1). There is also a simple (but not elementary) characterization 
of the subclass of all MRA wavelets; moreover, one can characterize all (p e 
I2(R) that are scaling functions for an MRA. These characterizations are 
stated in the following two propositions. 

Proposition 1.2 An orthonormal wavelet ip is an MRA wavelet if and only 
if 

A>(0 = EZW2J'(£ + 2/fc7T))|2 = l     o.e. 
j=ifcez 

Proposition 1.3 A function ip € Lr(R) is a scaling function for an MRA 
if and only if 

(i) £fcezl£(£ + 2A:7r)|2 = l   for a.e.   £ € R; 

(iij limbec |^(2-^)l = l   fora.e.^eR; 

(Hi) there exists a 2ir periodic function m € L2([—ir, it)) such that <p(2£) = 
™(0<P{0 for a.e. £ € R. 

The proofs for these results, as well as proper credits, can be found in 
chapter 7 of [6]. It is useful to point out that equality (i) in the last proposi- 
tion is equivalent*to the property that the sequence {<p(- — k)}, k € Z, is an 
orthonormal system. The easy proof of this fact can also be found in [6]. 

An immediate consequence of Proposition 1.3 is that if </? is a scaling 
function, then the function (p whose Fourier transform is \(p\ is also a scaling 
function; however, (p may be associated with a different MRA. An example 
of this phenomenon is provided by the Haar wavelet which is associated with 
the MRA determined by the scaling function xp that is the characteristic 
function of the interval [-1,0]. Then 

^' (f/2) 

.Let <p = (|t£|)v. If <p were a scaling function of this MRA, then <^(f) = 
KOv>(0 witn I a 27T periodic unimodular measurable function. Indeed, if <p, 
(p e V0 are each a scaling function for the MRA {V}}, j e Z, then 

<p(x) = Y, a^(x -k) 
Jtez 



with £jteZ |ckjfc|~ < oo and the convergence is in the norm of L2(R). Taking 
Fourier transforms of both sides, we then have 

Since I is the Fourier series of a function in L2(T) it is 2TT periodic. This 
fact and equality (i) in Proposition 1.3 imply that / is unimodular: 

1 = E l?(£ + 2k*)\2 = £ MS + 2*TT)0(£ + 2AT7T)!2 = 

K(OI
2
EI^ + 2*T)I

2
 = K(OI

2
-I = |/(OI

2 

Jtez 

almost everywhere.   In the Haar wavelet situation we are considering, we 
would then have 

for f € [-27T, 27r]\{0}, which shows that I cannot be 2n periodic. 
It follows from our discussion that if <pi and <^2 are scaling functions of 

the same MRA, then |<£i(f)| = 1^2(01 a-e- The same is true for two wavelets 
ipi and Tp2 associated with the same MRA: |i£i(OI = 1^2(01- We nav>e Just 

seen that a scaling function whose Fourier transform equals \<pi\ (or |<£2|) 
may be associated with a different MRA and, as we shall presently see, the 
same is true for an MRA wavelet. We shall see that there are situations 
when it is desirable to reduce a problem involving wavelets to the case where 
the scaling function <p involved satisfies <£(£) > 0. Toward this end, it is 
natural to study the properties of the class 5^OJr^0 an MRA wavelet, of all 
those MRA wavelets ip such that |<ÄJ(0I = IvKOI a-e-> where y?0 is a scaling 
function associated with the same MRA as ^0 and </? is a scaling function 
related with ip in the same way. It is not hard to see that S^0 coincides 
with the class W^0 of all those wavelets ip such that |^o(0l = 1^(01 a-e- 
(observe that it follows from Proposition 1.2 that any such tp is also an MRA 

'wavelet). Let us first observe that the inclusion W^0 C 5^0 is an immediate 
consequence of the equality 

woi2=£:tf(2>oi2 (6) 



(see (2.16) in chapter 2 of [6]). Now suppose that ip € S^ and tp, <p0 are 
scaling functions related to ip and ^0 by equality (5). It is clear from (3) that 
the corresponding low pass filters m and m0 have the same absolute value 
almost everywhere (recall that the low pass filter is uniquely determined by 
the scaling function). It then follows from (5) that ■& and i/>0 have absolute 
values that are equal a.e. ; this shows that S^0 C W^. Thus, whenever tp0 

is an MRA wavelet, 

WV0=<V (7) 

There is another description of this class of wavelets that is most useful to 
us. This involves the notion of a wavelet multiplier : a measurable function 
v such that (fi/>)v is an orthonormal wavelet whenever ip is an orthonormal 
wavelet. There is an elegant and simple characterization of these functions. 
Before announcing this result let us make a few observations. It will be of 
interest to us to consider what might be a larger class of such multipliers: 
those measurable functions v such that (t"0)v is an MRA wavelet whenever 
tp is an MRA wavelet. It is natural to consider this notion of multipliers 
in connection with scaling functions and low pass filters: we say that v 
is a scaling function multiplier if v(p is the Fourier transform of a scaling 
function whenever y is a scaling function; similarly we say that /x is a filter 
multiplier provided pm is a low pass filter whenever m is a low pass filter. 
The characterization of these multipliers is the content of the second theorem 
that we shall prove: 

Theorem II. The class of wavelet multipliers coincides with both the class of 
MRA wavelet multipliers and the set of scaling function multipliers. More- 
over, a measurable function v belongs to any one of these classes if and only 
if it is unimodular and v{2£)/'i/(f) is almost everywhere equal to a 2n periodic 
function. A measurable function ß is a filter multiplier if and only if ß is 
unimodular and is almost everywhere equal to a 1-n periodic function. 

Let us now return to another description of the class }%,„.   If ipQ is a 
.wavelet let M^0 be the collection of all wavelets ip whose Fourier transfom 
equals vipo, where v is a wavelet multiplier. Proposition 1.2 and the unimod- 
ularity of v imply that any ip € M^ is an MRA wavelet when tp0 is an MRA 
wavelet. The third result we shall establish is 



Theorem III. If fa is an MR A wavelet, then M^ = W^0 = SVo. 

When we denned the class M^0 we did not assume that v0 is an MRA 
wavelet; moreover, the set W^0 can also be defined whether or not fa is an 
MRA wavelet. Of course we must make this assumption in order to define 
the class S^; thus, we can only consider M^ and W^ when fa is not an 
MRA wavelet. These two sets are not always equal in this last case. This is 
one of the reasons we restrict our attention in this paper, for the most part, 
to MRA wavelets. Most of the rest of this work is devoted to applications 
of the equality obtained in Theorem III. Perhaps, the most interesting one 
is the fact that this last result can be used effectively for showing that the 
collection of MRA wavelets, as a subset of the unit sphere in L2(R) is arcwise 
connected. More precisely, we shall prove 

Theorem IV. // fa and fa are two MRA wavelets, then there exists a con- 
tinuous map A : [0,1] —► L2(R) such that A(0) = fa, A{1) = fa and A{t) 
is an MRA wavelet for all t € [0,1]. 

If /(O is a-complex valued function on R, then /(£) = ei/3(f)|/(f)| for 
some real valued function ß (which is clearly not unique). We call such a 
function ß a phase of the function /. Another application of Theorem III that 
we shall present is a characterization of the phases of the MRA wavelets. We 
will also make some observations about the phases of other wavelets. Finally, 
we will describe the "shorter notes" that accompany this paper. 

2    The Proof of Theorem I , 

Given an MRA wavelet V satisfying equality (5) we must find a scaling 
function (p with accompanying filter fh such that 

ÄO = e*/2m[i + 7r 
2 (8) 

where <p and <p are scaling functions for the same MRA. But this means that 
£(0 = i(?)(

I5(0. with t a unimodular 2n periodic measurable function. A 
simple calculation shows that the filter m determined by <p is related to fh 

8 



by the equality 

rh(0 = t(2S)W)m{0. (9) 

Thus, equality (8) can be re-written in the form 

*K)-'*/,{«KJ*(f)'(f + ')}'»(f+ ')#(f) 
(we are using the 2~ periodicity of t). Comparing this equality with (5) we 
see that we can reduce the proof of Theorem I to establishing the following 
Lemma: 

Lemma 2.1 Suppose s is a 2ir periodic, unimodular and measurable function 
on R, then there exists a 2T periodic, unimodular and measurable function t 
such that 

*(fl = *(!)* (f) *(§ +ff) (10) 

Proof. We shall show that the solution i(f) is completely determined by 
its restriction to the interval [0, TV\ and this restriction can be an arbitrary 
unimodular measurable function. Toward this end let us rewrite equality 
(10) in the fprm 

*(0 = W^WS - ff))a(20  , (11) 
where we have used the fact that the desired solution t is 2it periodic. Let 
us partition [0, 2TT) into the subintervals Ij = [2ir(l - 2~J'),27r(l - 2~j~1)), 
j = 0,1,2,... ; thus, 

oo 

U Ij = [0, 7T) U [IT, 3TT/2) U [3TT/2, 7TT/4) ... = [0, 2TT) . 

We begin by defining the restrictions, t,, of t to the intervals /,-. Let us choose 
an arbitrary unimodular measurable function t0 on I0 = [0, TT). If ^ € I\ then 
e, - n and 2(^ - ir) belong to I0. Hence, equality (11) defines the function tx 

■ on h in terms of t0 and s. In general, if f € Ij+X then f - it e I0 and 2(f - ir) 
belongs to Ij . Thus, equality (11) defines tj+l by letting 

*i+i(0 = «o(?-^)*j(2(^-7r))s(20 



when f € Ij+i. Having so defined t on [0,2-), we extend t to R by 2~ 
periodicity. On the interval [TT, 27r) we rewrite(ll) in the form 

*(0*tf-*)=t(2fl5(20. (12) 

Using the 2n periodicity of t, let us observe that each side of (12) is a - 
periodic expression and, thus, this equality extends to Ufc6z[/c7r, {k + 1)~) = 
R. Then, putting rj = 2£ and solving for s(rj) we obtain the desired equality 
(10) (let us observe that on several occasions here, and in the sequel, we 
use the fact that the reciprocal of an unimodular function is its complex 
conjugate). D 

3    The Proof of Theorem II 

We begin with the characterization of the filter multipliers. Suppose, first 
that ß satisfies the two conditions stated in the last part of the announce- 
ment of this theorem: it is unimodular and almost everywhere equal to a 
27T periodic function. We claim that there exists a unimodular function t 
satisfying 

MO = t(20W (13) 
(compare with equality (9) as a motivation for this equation). Let t be any 
measurable unimodular function defined on the set S = [—2ir, -TT) U [TT, 2TT). 

If f € 25, let 

'«»-'(I)"®' (14) 

then (13) is clearly satisfied for f € S. We proceed inductively: assuming t 
is defined on 2*5, j = 1,2,..., n, so that (13) is'valid on U^2SS, we define 
t(0 by equality (14) when £ € 2n+lS. If f € 2~lS we let *(£) = i(20M?). 
We then use this last equality to proceed inductively for the definition of t on 
the sets 2n5, n < -1. Since Un(=z2nS = R\{0} we obtain a desired solution 
of (13) for almost every point of R (in this case, all f ^ 0). 

Suppose that m is a low pass filter defined by the scaling function ip. We 
then claimjhat rh = ßm is the low pass filter defined by the scaling function 
<p, where <p = tip. That (p is, indeed, a scaling function is an immediate 
consequence of Proposition 1.3: Properties (i) and (ii) are clearly satisfied 

10 



since t is unimodular and they are satisfied by the scaling function <p; property 
(iii) is also satisfied since m = \an is 2TT periodic and 

=   m(0£(0  • 
Conversely, if /x is a filter multiplier, the fact that it must be unimodular is 
an immediate consequence of the fact that any low pass filter satisfies the 

equality n ._ x 

|m(OI2 + Me + *)l =1 (lo) " 
for almost all f (see (2.5) in Chapter 2 of [6]). For the Haar wavelet, the low 
pass filter is mh(0 = (1 + e*)/2 and for the Shannon wavelet the low pass 
filter is the 2TT periodic function m3 that equals the characteristic function 
of the interval [-§, f) when restricted to [-TC.TT) (see examples B and C in 
chapter 2 of [6]). The fact that /xm„ being a filter, must satisfy (15) implies 
that IMOI = 1 on the intervals [TT^,^), k G Z. This last Property and 
the fact that y.mh must satisfy (15) imply that |/i(OI = 1 on [TT-J-^-J-), 

fc € Z. Since the union of these two collections of intervals forms a partition 
of R, we see that the filter multiplier \x must be unimodular. 

Since mfc(0 # 0 when % is not an odd multiple of n and /xmÄ1 being 
a low pass filter, equals a 2?r periodic function m a.e., we conclude that 
^ _. m(f)/m/i(0 also equals a 2TT periodic function a.e. This establishes 
the characterization of filter multipliers. 

We now turn to the characterization of the wavelet multipliers. Let_us 
first show that if v is a unimodular function such that i/(2£)M0 = "(20KO 

is 2TT periodic, then it is a wavelet multiplier. We must show that i> = i4 
is the Fourier transform of a wavelet whenever V is a .wavelet. We do this 
bv showing that ^ satisfies the properties (i), (ii) in Proposition 1.1 and 
llJlb > 1- Equality (i) and the last inequality are immediate since v is 
unimodular and V satisfies these conditions (being a wavelet). Hence, the 
only thing needed is to show that 

f^(2jO^(2j(S + 2g7r)) = 0 (16) 

a.e. when q is an odd integer. The summands of this series are equal to the 

products    
K2jO"(2J(£ + 2<F)) V»(2J'0^(2J'(? + 2g7r)) (17) 
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for j > 0. When j > 1, using the unimodularity of v and the 2~ periodicity 
of 1/(277)1/(77), we have   

t,(2>Z)v(2>{S + 2qir)) = 

• ^(2^-1(C + 2qn))v(2J{S + 2q7r)) = (18) 

//(2J-10^-1(<e + 2(77r)) 

since, by the 2n periodicity of i/(2rj)u(r]) and the unimodularity of u, the 
product of first two factors in (18) is the reciprocal of the product of the last 
two factors. We can continue this reduction and obtain 

u{23S)u{2>{Z + -2qn)) = !/(Oi/(£ + 2g7r) 

when j > 1. Thus, the series in (16) equals 

i=o 

a.e. and it follows that v is, indeed, a wavelet multiplier. 
If we show that a wavelet multiplier v is unimodular, then Proposition 

1.2 implies that ip is an MRA wavelet whenever ip is an MRA wavelet. Con- 
sequently, the collection of wavelet multipliers is contained in the class of 
MRA wavelet multipliers. We shall show that if v belongs to this last, possi- 
bly larger, class, then it does satisfy the two properties (unimodularity and 
the 27T periodicity of v(2f )MO) we Just used- Hence, the equality of these 
two classes will be established. 

Let us assume, then, that u is a wavelet multiplier and show that it must 
be unimodular. Let Fn = {£ € R : KOI > l"+ J}, n > 1. Let ip be a 
wavelet such that {f : ^(f) = 0} has measure 0 (for example, we can choose 
V> to be the Haar wavelet). Then there exists an e > 0 such that 

\{S •■ \fa)\ > e) n Fn\ > ±\Fn\, 

where \S\ denotes the Lebesgue measure of the measurable set S. Let N € N 
be such that e(l + ±)N > 1. Then vNij) is the Fourier transform of a wavelet 

whose absolute value on the set {£ : |i/i(f)| > e) n Fn exceeds 1.  But the 
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Fourier transform of a wavelet cannot exceed 1 on a set of positive measure; 
consequently, \Fn\ = 0. Since n € N is arbitrary, it follows that |i/(£)| < 1 
a.e. Moreover, 

i = ml = (1/2-) I m)\2da > (1/27T) / Hornig = i 

because (w)v. being a wavelet, has L2 norm 1. Therefore the last inequality 
is an equality and we can conclude that \v(£)\ = 1 a.e. since tp(£) ^ 0 a.e. 
Let us observe that this argument also shows that an MRA wavelet multiplier 
must be unimodular. 

We shall now show the 2TT periodicity of f(2£)/i/(f) when u is an MRA 
wavelet multiplier. It is easy to see that if tp is an MRA wavelet then 
e,f/2|^(OI is tne Fourier transform of an MRA wavelet. We can assume 
that ip satisfies equality (5). Then, as we have already observed, \tp\ is a 
scaling function whose associated low pass filter is \m\. Consequently, 

eif/2 _ „tf/2 = e«"M0l 

is the Fourier transform of an MRA wavelet. Let us choose rp = tpQ so that 
i>(€) ¥" 0 for a.e. f (again^ the Haar wavelet provides us with such a wavelet). 
Let <p0 be a scaling function, with filter m0, such that 

^o(O = e*/2mo^+7rj(Ä>f0    and    i?i(fl = i/(fle*'2 |Ä,(fl| . 

Then ipi is an MRA wavelet (by Proposition 1.2, since u is unimodular) and, 
by Theorem I, we can find a scaling function y?L and accompanying filter mx 

such that   

"(fle^l&Cfll »^^(f + ^^f)   • (19) 

From (6) and the fact that |^0(0l = |^i(OI we have |£„(0I = l£i(OI and 
l^oCOl = lmiOOI a.e. Let us now replace f in (19) by 2f and divide each side 
of this new equality by the corresponding sides in equality (19) to obtain 

t/(2Q hft»(2Ql   =       m!(g+ 70^(0 

"(OM>(OI ™i(* + £/2)<Pi(£/2) 
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Thus, 
i/(20   =   N>o(fll™i(g + *Wg/2) 
K0 1^0(201^(^ + ^/2) 

mi(S + x)   K(T + e/2)|   mi(£/2) 
No(£ + *)l   m1(7T + e/2)   K(£/2)|' 

(20) 

where we repeatedly used the expression of i/> in terms of m and 0. as well 
as (3), to obtain the last equality; in particular, we have 

lA>(01   =        K>fr + g/2)| 
|^o(20l        |mo(? + T)IM?/2)| ' 

The first fraction in (20) clearly defines a 2?r periodic function. The product 
of the last two fractions in (20) equals 

K(7r + g/2)|   rrnit/2)    ^  m1(7T + g/2)    mx(g/2) 
m1(7r + ^/2)   K^/2)!       |m1(7T + ^/2)| K(£/2)| 

which is clearly a 27r periodic function. 
The characterization of scaling function multipliers is obtained in a sim- 

ilar, and simpler, way. If i(0 is unimodular and i(20*(0 is 27r periodic it is 
immediate to verify that t(p satisfies the conditions of Proposition 1.3 when <p 
does. Thus, t is a scaling function multiplier. If, on the other hand, we know 
that t is a scaling function multiplier, the fact "that it must be unimodular 
follows from the same argument we used for an MRA wavelet multiplier; this 
time we can use the Haar scaling function </>0 instead of the Haar wavelet. We 
also use the fact that <£>o(0 r 0 f°r almost all £ to show the 2TT periodicity of 
£ —> i(20*(0- Since tipo = (p is the Fourier transform of a scaling function, 

. <p(20 = 7n(0vK0) where m is the filter associated with (p. But 

£(20 = *(2O0o(2O   =   i(2Omo(O0o(O = 

t(20m0(Ot(0*(0<A)(0   =   i(20t(Omo(05(0 
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It follows that m(f) = t(2£)t{£)mo(£) and, consequently, 

m(0 
t(2Z)t(S) = ™o(0 

(since the functions we are using are non-zero a.e. and t is unimodular). But 
the last quotient is 27r periodic. D 

Let us observe that the three types of multipliers we have characterized 
are related. An examination of our arguments shows that if £(f) is a scaling 
function multiplier that produces the scaling function <p from the scaling 
function <p, then /i(f)- = t(2£)t(£) is the multiplier that gives us the low 
pass filter m defined by (p from the low pass filter m associated with the 
scaling function <p. The low pass filters are uniquely determined, via equality 
(3), by the scaling functions. A low pass filter, however, can arise from 
different scaling functions. This is reflected by the fact that equation (13) 
has an infinitude of solutions. Each of these solutions is a scaling function 
multiplier. 

If v is a 2TC periodic wavelet function multiplier, then each of the solutions 
t of equation (11)- (with v = s) is a scaling function multiplier. There are 
several other relations between these multipliers and the roles they play in 
the structure of the sets )%„, S^ and M^0. These questions will be the 
subject of a future study. 

4    The proof of Theorem III 

We have already shown that W^,0 = S^ (see equality (7)). Thus, to establish 
Theorem III we must show that M^ coincides with either W^0 or 5^0. The 
inclusion M^0 C VV^0 is immediate since wavelet multiplier functions are 
unimodular. 

We shall show that S^,0 C M^0. Suppose Vi € S$0. Let (fj be the scaling 
function such that 

^•(0 = e*/2m 

j = 0,1 (Theorem I guarantees the existence of these scaling functions and 
associated filters). As we have observed, |<£o(OI = l"£i(OI a-e- Let <p be the 
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scaling function satisfying (p = 1^(01 0 is either 0 or 1); then rh = \m:\ is 
the associated low pass filter and let iß be the wavelet satisfying 

We shall show that there exists a wavelet multiplier function v} such that 

•0j = Vjib for j = 0 and j = 1.  Then v — v{U^ is also a wavelet multiplier 
function (this is immediate from the characterization given in Theorem II) 
and ißi = uißQ. This, then, would establish the desired inclusion S^0 C M^0. 

In order to construct the wavelet multiplier vx we first assume that 

E = {£ : 6>(0 ± 0} = {£ : 5(0 # 0} = {£ : &(0 ^ 0} = R . 

In this case 

0i (0 
is a well defined unimodular function. Moreover, it follows from our assump- 
tion and (3) that neither mi(£) nor rä(£) is ever 0. Let p = sgn mi (that is, 
H(£) = m!(0/m(0). We claim that 

t(20t(O = MO • (21) 
To establish this equality we first observe that 

?(2£) = t(20&(20   =   *(2Omi(O0i(O = 
t(2O*(O"*i(O*(O0i(O   =   i(20*(0™i(fl5(0  • 

From this it follows that m(0 = *(2Qt(£)mi(g) and (21) is an immediate 
consequence of this last equality. Moreover, t(2f)i(f) = Mf )> ^ t^ie ratio of 
two nonzero 27r periodic functions, is also 27r periodic. 

We claim that i/i(f) = PL(TT + £/2)£(£/2) is the desired wavelet multiplier 
function. It is clear that it is unimodular; furthermore, using (21), we have 

^i(20"i(0 = MTT + Ot(Z)ß I * + |J t I | I = p(ir + ftp I | 

But the last expression is 27r periodic since p has this property. It follows 
from Theorem II that vx is a wavelet multiplier function. Furthermore, we 
claim that 

1>i = t>i$ • (22) 
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Indeed,   

"i(Otf(0 

We have established Theorem III when <pi(£) # 0 for all f. When this is not 
the case, i(f) = 9(0/<£i(0 is only defined on a set whose complement may 
have positive measure; when this is the case we need to find an appropriate 
extension of the unimodular function £(f) for all f € R. We shall do this so 
that (21) is satisfied by this extension when ß is the 2ir periodic unimodular 
function satisying ß(0™(0 = mi(f) and M(0 = 1 when mi(f) = 0 (we can 
assume that <£(£) = \<f\(0\ anc* rä(Q = jro^)! for all f). The argument 
that established (22) with i/^f) = /z(7r + f/2)t(f/2) can then be carried out 
in order to finish the proof of Theorem III. 

Thus, we shall now show how to construct this extension of £(£). Let 

F = {£ € R : &(2'+10 = Fii(2'0£i(2'0 for all  i e Z}. 

If we let 
Ft = {£ € R : &(2'+1fl = rm^Oft^)} 

for each I € Z, then F = ni6ZF, and R\F = U/6Z(R\F,). Observe that 
Ft = 2"'fb and, since |R\F0| = 0, we have |R\F<| = .0 for all/ € Z and it 
follows that 

|R\F| = 0 .      " (23) 

It is also immediate that 

F = 2'F    for all I € Z. (24) 

Let E = {£ e F : £i(0 # 0}. If 2f € E then, by the definition of F, 2£ € F 
and, by (24), we conclude that f € F. In particular, </?i(2f) = mi(0<£i(f); 
this equality and £i(2f) # 0 (since 2f € F) imply <px{() # 0. Thus, f € F; 
that is, 2_1F C F. It follows that 

2nFC2n+1F   n = 0,1,2,...  . (25) 
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Suppose that K is a measurable subset of F\ Un>o 2nE — C\n>0{F\2n E). 
We claim that 

X*(O£i(2~nO=E0    for all  n > 0. (26) 

It is clear that this equality is true when £ ^ K. If £ G A' then (6F and, by 
(24), 2nf € F for all n € Z; moreover, 2"n£ £ £ for all n > 0. Consequently, 
by the definition of E, ^i(2~nO = 0 for all n > 0. This proves (26). 

The Fourier transform of 2n/291(27lx - Jfe) is 2-n/2e-ifc2~nVi(2~nO, *> 
n € Z. Hence, it follows from (26) that XK -L K for all n € Z. This fact, 
together with (2.4) imply that \K\ = 0 and, consequently, |Fn\Un>02n£| = 0. 
Since 

R\Un>02"£   C  (R\F)u(F\Un>02^)   , 

the last equality and (23) imply 

R\ Un>o TE = 0 . (21 

We are now ready to construct the appropriate extension of £(£).   Let 
A0 = E and An = 2nE\2n~lE for n > 1. Thus, if H = Un>02n£, then 

R=(R\F)u(Un>0An)   , 

where Am n An = 0 when m # n, (R - if) n An = 0 for n > 0 and 
|R - H\ = 0 (by (25) and (27)). Let \x be the 2TT periodic, unimodular 
measurable function we defined in the paragraph that follows (22). We define 
*o(0> for £ € A0 = E as the'ratio £(0/£i(0- Then, for n > 1 we define 
t„+i(0 for f € An+1 by letting 

i»+i(0 = M£/2)tn(£/2) 

assuming tn is defined on An (observe that A„+1 = 2A„ for n > 1). Then 
t(0 is defined on H = Un>02n.E = Un>0An by putting t(f) = tn(£) when 
f € An. Since R\if has measure 0 we only need to establish (21) on H; that 
is 

t(20t(fl = MO (28) 

for f € if with /x satisfying M(0^(0 = ™i(f) and /*(£) = 1 when m^f) = 0. 
As was the case before, /i is a.e. equal to a 2ir periodic measurable function. 
Also observe that H = 2H. 
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Suppose f and 2£ belong to A0 = E. Then, 

£(2^ =-t0(2O£i(2O = *o(20™i(0£i(0 = *o(20^(Ö^i(03(0  ■ 

Since p(2£) = m(0?(0 and a11 the values involved are non-zero, m(0 = 
t0(it;)W)mi(O and we must have t(2?)«(0 = <o(20*o(0 = MO in this 

case Now suppose f € £ but 2f g £, so that 2£ € 2E\E = Ax. Then the 
definition of t = U on ^ in terms of t0 and ^ show that (28) is satisfied 
for these values of f. We can now carry out an induction argument, similar 
to the ones we have already given, that shows that (28) is satisfied for all 
£ € H as the disjoint union of the sets An. As we observed above, we can 
then establish (22) by the same argument we used above in order to finish 
the proof of Theorem III. 

5    The Proof of Theorem IV 

The proof of this connectivity result will consist of two parts. The first is 
devoted to showing that the class M^ is arcwise connected. In the second 
part we show that if befand ^ are two MRA wavelets then an appropriate 
element of Mto can be connected by a continuous arc with a particular 
element of the class M^. It is clear that this, then, proves Theorem IV. 

Suppose Vi € M^.   Then fa = wtß0, where v is a wavelet multiplier. 
Thus, by Theorem III 

MO = "(2£MÜ (29) 
is unimodular and is equal a.e. to a 2TT periodic function. For simplicity, 
let us assume that this holds for all f. We can write MO = e > where 

0 < /5(0 < 27T for all £. We thus obtain a unique 27r periodic phase ß for the 
function AX- We can also write i/(0 = eiX«l Our task is to find an appropriate 
choice for A(0 so that 

• t € [0,1], is a wavelet multiplier and the function d : t —► A{0 ■= "«(OV'oCO 
is a continuous map from [0,1] to L2(R) whose values are wavelets that, for 
t = 0 and t = 1, equal tp0 and fa respectively. 

We do this by means of an argument that is a variant of one we used 
above (compare with the construction of the function t(0 at the end of the 
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last section). Let E = [—4TT, — 2ir) U [2ir,4ir). On E we select A so that 
0 < A(0 < 2~. If f e IE we let 

A(0 = A(£/2)+/?(£/2)  • (3D 

Then, making use of (29), we have 

We then continue inductively: assuming that A(£) is defined on 2kE, 0 < 
k < n, we let A(£), for £ € 2n+1£, be defined by equality (31). In this way 
we have selected a phase A(£) of v(£) = elA(f) for £ € Un>02n£' in such a way 
that 

A(20 - A(0 = ß(0 ■ (32) 

If f 6 2~1£ we let A(£) = A(2^) - /?(£) and use this equality inductively 
to obtain A(£) defined on Un>i2~nE. This gives us a function A defined on 
R\{0} satisfying (32) for all f ^ 0. 

It follows from Theorem II that vt is a wavelet multiplier for each t G [0,1]: 
it is clearly a unimodular function and, by (32), 

»tit) 
= e*[A(20-A(0) _ eitß(S) 

which is 27T periodic since ß has this property. Thus, tpt = Vtipa € M.^0. 
Finally, we claim that 9(t) = tpt is a continuous mapping from [0,1] to 

L2(R). This is the case since 

\MO - MO\2 = \eitm - eisX^2 \M^)\2 < 4hMOI2. 

and, by the Lebesgue dominated convergence theorem and, then, Plancherel's 
theorem, we have, for each s € [0,1], 

lim||i/>t-^||2 = 0 . 

This shows that each of the classes M^0 is arcwise connected. 
We now pass to the second part of the proof. Since, by Theorem III, 

Mj,Q = £,/,„, to show that any two MRA wavelets are connected by a contin- 
uous path it suffices to choose Vo to be the Shannon wavelet and select an 
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appropriate element ^i in any other class Sv where V is an MRA wavelet, 
and construct such a path that connects ijj0 to ibx. The appropriate ipx € Sv 

is chosen~so that it is associated with a scaling function ipx such that $x > 0. 
By the definition of S^ this can always be done and we can assume that 

^1(0=eI«/2m1(7r + £/2)^1(£/2)  , 

where mx is the low pass filter associated with <px. We recall that the Shannon 
wavelet ip0 satisfies the analogous equality 

^o(£)=e*/2mo(7r + £/2)0o(£/2)  , 

where <£0(O = X[-*vr)(0 and the associated filter m0 is the 2TT periodic 
function that equals X[-v/2,v/2) on the period interval [—7r,7r). 

We shall construct a family of "intermediate" filters {mtj, t e [0,1], that 
connects m0 with mx and then use these filters to define a family of scaling 
functions {<pt} from which we will obtain the desired path connecting ip0 to 
i])\. This family is defined on [-7r,7r) by letting mt satisfy 

mt(0 =  < 

f(l-t)mo(fl + Wfl    .    £<E[-f,*f)\[-(l-t)f, (l-t)f) 
* , .      e€[-(i-t)f, (i-t)i) 

and, then, mt is extended to R so that it is 27r periodic. 
We thus, obtain a non-negative 27r periodic function mt such that 

m2(0 + m2(^ + 7r) = l   for all f € R and t G [0,1]. (33) 

Moreover, mt(f) = 1 on [-(1 - £)§, (1 - £)§).  Ät t = 0 we obtain the 
Shannon filter and at i = 1 we have the filter defined by (px. Let 

<*(0 = 5™t(2-''0 

for f € R. This product is well defined since 0 < mt(£) < 1. Moreover, 

<Pt{Z) = 1   when £ e [-(1 - t)ir, (1 - t)ir)   and 0 < t < 1.        (34) 
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It is also clear that £t(2s) = "it(f)9t(0 for all f € R. Thus, 9t satisfies 
properties (ii)and (iii) of Proposition 1.3. We shall show that ipt € L2(R) 
and its inverse Fourier transfom <pt satisfies property (i) of'this proposition. 
Thus (pt is a scaling function. The argument we use to establish this is well 
known in wavelet theory (see, for example, the proof of Proposition 3.9 in 
Chapter 2 of [6]); however, our hypotheses are somewhat different and, for 
the sake of completeness, we include it here. 

For k > 1 let 

k 

Ptjtit) = X[-*.*)(2"*0 n™t(2~J0  • 
j=l 

For n € Z and k > 2 let 

Observe that U.j=l Tn2{2 *£) is 2kn periodic. Hence, using this fact and (33) 
we have: 

Ilk = jT2"' [m]{2-kZ) + m]{2-kZ ~ *)] if m?(2"^) e^df = 

rn _ _   rn    _ 
it,fc-l     —     •■*> ■   — 1t,l — 

JR J-2ir 

/2,r[m2^/2) + m2(e/2-7r)]e-^^   =    [** e-**dZ = 2*5nja . 
Jo Jo 

Clearly, lim^-coo ptjciZ) — £t(0 f°r all f € R and, by the above equalities, 
It,k — IIA1*,*II2 = 27T. Thus, an application of Fatou's lemma shows that 
<p't € L2(R) with \\ift\\l < 2?r. 

Suppose f e [—7r,7r), then f/2 G [-7r/2, TT/2) and, thus, mt(2-j0 >l-t 
for j > 1. If £ < 1 let us choose a fc0 sufficiently large so that 2~ko < 1 -1. 
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Hence, if f € [—7r, 7r) and A: > kQ, it follows from (34) that &(2 fcf) - 1. 
Therefore. 

^(o = n^(2-jo n ^(2_jo * 
j=l j=fco+l 

(1 - £)fcVt(2-fcoO = (1-t)*0 

if f € [-7T, 7r). Thus, we obtain 

X.-..-K) £ (^§5 (35) 

for all f € R. From this we conclude that 

^t(2-fc0 A-    ,2_^ _   ft(fl (T=^n^(2 o- {l_t)k0 ■ 

Since, as we just showed, <pt 6 £2(R)> we can aPP^ Lebesgue's Dominated 
.' Convergence Theorem to obtain 

f [^(0]2e-m^ =   Um   [[ßtAOfe-^d^ =2ir5n<0 . 
JJL k-*oo JR. 

Therefore, {</?<(• - fc)}, fc € Z is an orthonormal system and we have shown 
that <pt is a scaling function since it satisfies all the hypotheses of Proposition 
1.3. . . 

The proof of Theorem IV will be concluded once we show that t -»■ ipt is 
a continuous mapping from [0,1] to L2(R), where 

Ä(0 = e^™t(f+ *)&(!)   • 
• We begin by examining the continuity of the map t —► <pt- 

Let us fix a Pomt 

s € [0,1] and list those points £ € R such that i —► mt(0 is noi continuous 
at s. If 0 < s < 1 there are, at most, four such points within [-ir, ir) : ±7r-^ 
ancj ±7ri±£ (when s = 0 or s = 1, there are, at most, two such points; 
moreover2 for these two values of s, we are only interested in continuity from 
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the right at 0 and from the left at 1). Because of the 2- periodicity of ms we 
must also consider the 2/CTT translates of these points, k € Z. We now pass 
to the points of discontinuity at s of the map t —> m^l'^), j > 1. These 
values make up the set 

Z>, =      ±2>7T 
1-5 

f2fc), ±2J>r(-p + 2/) :     U € Z , j > l} 

I2U 
Let U = {£ € R :   lim^^ 01(2"^) = 1}.  We then have |R\W| = 0 = 

Lemma 5.1 If £ G U\VS then limt_>4 <£t(f) = <£,(£)• 

Proof. If 7] G [—7r/2,7r/2) then 77^(77) is either 1 or (1 - t) +tml(rj). In 
either case, mt{rj) > 7711(77). From this it follows that 

<Pttn) > $i(v) when   77 G [—7r, 7r) . (36) 

For a fixed f G W\Pa and e G (0,1) we can find M = M(e, 0 such that 

<fi(2~nO>l-e   and|2-ne|<7T 

if n > M. Hence, 

l&(0-&(OI = n-< 4 -n 
J=I 

M 

S-& Vt 
2M 

2J 

Af 

77lc 

J = l 
2J 

S-& <p. >\2M 

Vt 
2M -1 

M 

Sn*, 2M -1 
M 

J5"H*J + 

M A* 

lH*)-,tH*, < 2e + 
M M n-dJ-n-d. 
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Because of our choice of f, t —y m£(2
-^) is continuous at s for each ;' > 1; 

therefore, there exists S = 6(~) such that 

Ho-Mi; < £ 

if \t - s\ < 5.  Hence, |&(f) - &(f)| < 3c if |i - s| < 5 and the lemma is 
proved. □ 

Since t —v mt{E,/2 -f it) is continuous at s whenever f/2 + TT is not a 
translate by 2kir, k 6 Z, of the points of the form ±ir(l ± s)/2 and f € W if 
and only if f/2 € W it follows from Lemma 5.1 that 

Um MO=i>.{0 (37) 

for a.e. (eR. Since \\ipt\\j = 2TT = ||^,||2 and mtj m4> &, and <ps are non 
negative, an application of Schwarz's inequality gives us 

We claim that 

lim(Ä,^) = 27r • (38) 

If this were not the case, there would exist a sequence {tn} C [0,1] and an 
e > 0 such that lim,,^«, tn = s and 

£"*■ (l + *)  *" (!)  m' (I + ')  * (f) «   * 27T 
for n = 1,2,3,... . Let us choose a compact subset K of R such that 

/" hk(fll2df >2TT-£ . 

Then, by (37) and the Dominated Convergence theorem (recall that |V>(f)l < 
1 when ip is a wavelet) we have 

— £ 

fK\Mt)\2dt = }™Jjtn(OMOd(; < 2n-£ < 
JK" '  
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lim sup ,     . _t„ ,      . -   , r,   , f   -- ^n    ,   2 j     T-.n   y^ 

which is a contradiction. Hence, from (38) 

Ut - ips\\l = \\ij)t\\\ + \\tis\\\ - (rj)t,xßs) - {i>s,it) —► 4TT - 2TT - 2n = 0 

as £ —>• s. This establishes the desired continuity of the path we constructed 
that connects fa to ipi and Theorem IV is proved. 

6    Further observations and description of the 
consortium 

The results in this paper have been obtained in a genuine collaboration by 
members of the Wutam Consortium. There are and will be articles that 
elaborate some of the results announced here. We emphasize, however, that 
in this and subsequent reports by the Wutam Consortium, this collabora- 
tion will continue and each member of the consortium should consider these 
articles as part of their original scientific contribution. 

Perhaps the first results on the connectivity of wavelets are contained in a 
paper by Aline Bonami, Silvain Durand and Guido Weiss [2]. These authors 
restricted their attention to wavelets produced by very smooth filters. The 
filters m they considered are elements of an infinite dimensional C°° manifold 
of 27T periodic functions m satisfying equality (15) and m(0) = 1. Their 
construction of a path joining two such filters is very different from the two 
presented in this paper. The continuity of the path is defined in terms of the 
topology introduced on the manifold. This does produce a continuous path 
of very smooth Fourier transforms of scaling functions, where the topology 
of the image is defined in terms of the L2 norms of the functions involved 
and their derivatives. There is, however, a very important (and somewhat 

• subtle) difference when all this is transferred to the Fourier transforms of 
wavelets defined in terms of the filters and scaling functions that have been 
constructed. There is a topological impediment that makes it impossible, 
in general, to obtain a corresponding continuous path of wavelets. In order 
to obtain an insight into this situation let us examine equality (5).   The 
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unimodular function s(f), in this situation, must also be smooth and, hence, 
must belong to a homotopy class corresponding to an integer, the "winding 
number"~bf the path that has values in the circle of radius 1 about the origin 
in the complex plane. One can show that if we have a continuous path of 
wavelets, in the smooth sense we are considering, the corresponding path 
t —> st(0> t 6 [0,1], must be a jointly continuous function in the variables t 
and f. Thus, if s0 and Si belong to different homotopy classes, they cannot be 
connected by an arc i —> st having this joint continuity property. A simple 
example of this situation is provided by trying to join the Haar wavelet tp0 

to its translate by 1, ^ = t/>0(- - 1). If -0O satisfies equality (4), then tpl 

satisies (5) with s(f) = e"'f. Since this last function and the function that 
is identically equal to 1 are not in the same homotopy class, there is no 
path, of the type we described, that joins them. These questions, as well 
as an extension of the results by Bonami, Durand and Weiss can be found 
in the Ph.D. thesis of Gustavo Garrigos, a student of Weiss at Washington 
University. 

Another interesting connectivity result was obtained by Damn Speegle. 
He showed (in his thesis as a student at Texas A&M) that all Minimally 
Supported Frequency (MSF) wavelets are connected. These are the wavelets 
whose Fourier transform has an absolute value that equals the characteristic 
function of a set K C R. Such a set must have measure equal to 2TT. The 
support of the Fourier transform of any wavelet cannot have measure smaller 
than 2r; this is the motivation for so naming the above class. The MSF 
wavelets are of interest for many reasons. The well known Journe wavelet 
(see page 64 of [6]) was the first example of a non-MRA wavelet; it is an 
MSF wavelet. The Shannon wavelet is another example of a member of this 
class; it is, of course, an MRA wavelet. Auscher [1] and Lemarie [8] have, 
independently, shown that if one makes very mild assumptions about the 
Fourier transform of a wavelet (continuity and a decrease at oo) it must 
be an MRA wavelet. These facts tend to indicate that "most" wavelets 
are either MRA wavelets or MSF wavelets. Thus, if one joins Theorem IV 
with Speegle's result it is not unreasonable to conjecture that the class of 
all wavelets is connected. We shall return to these considerations below. An 
elegant proof of the connectivity of a class of MSF wavelets can be found in 
[7]. It should also be noted that some notions of the connectivity of wavelets 
formed some of the motivation for the results obtained in [5]. 

The notion of a wavelet multiplier function were introduced in a paper 
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of X. Dai, Qing Gu, David Larson and R. Liang [3] and in the Memoir 
[5] by Dai and Larson.   The proof we presented of the characterization of 
these functions given in Theorem II is a variant of the one first produced 
by these four authors. The consideration of the other multipliers considered 
in Theorem III is naturally motivated by the study of wavelet multipliers. 
Further results related to these multipliers, as well as the structure of the 
classes M^0, W^0 and «S^ can be found in a paper by Papadakis. Sikic and 
Weiss ([9]). We have already mentioned the fact that the equality My = W^ 
may be false when ip is not an MRA wavelet. Gu has obtained an example of 
two wavelets Vi, "02 such that Vi # ^2 for all wavelet multiplier functions v. 
In order to put these facts into some sort of perspective we first remind the 
reader that if ip is an MSF wavelet, then eiA({)|^(0| is the Fourier transform 
of a wavelet for all real valued measurable functions A(£) (see the "remark" 
on pages 349-50 of [6]).  Thus, M+ = W^ when ip is an MSF wavelet.  In 
this paper we show that this equality holds for all MRA wavelets.   These 
observations should be kept in mind in connection with our statement that 
"most wavelets are MSF or MRA wavelets;" Gu's example shows that there 
are other wavelets. At present, it is not clear where they "fit" with respect 
to the general connectivity question. 

This particular exposition was written by Weiss who owes very special 
thanks to Garrigös, Paluszynski and Sikic for many discussions concerning 
the form that this exposition should take.  They also read this manuscript 
as it was evolving and made several very appropriate suggestions and cor- 
rections. Theorems I and III will be elaborated in the collaboration [9]. The 
elegant argument used in the proof of Lemma 2.1 is mainly due to three 
students who took a course in the theory of wavelets given by Weiss: Marcin 
Bownik, Wojtek Czaja and Ziemovit Rzeszotnik.  The proof of the lemma 
was assigned as an exercise in the course; their" solution was certainly bet- 
ter than Weiss' original one. One can see from this solution the "inherent" 
discontinuity of the solution, i(f) of the functional equation (10).  This is 
related to the homotopy impediment we discussed four paragraphs above. 

We shall now list the members of the Wutam Consortium in two groups, 
• the one associated with Texas A&.M and the one associated with Washington 

University. We shall give the present affiliation of each individual. 

From Texas A&M 
Xingde Dai, University of North Carolina at Charlotte; 
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Qing Gu. Texas A&M University; 
Deguang Han, Texas A&M University; 
David Larson, Texas A&M University; 
Rufeng Liang, University of North Carolina at Charlotte; 
Shijin Lu, Texas A&M University; 
Darrin Speegle, St. Louis University. 

From Washington University 
Gustavo Garrigos, Washington University; 
Eugenio Hernandez, Universidad Autönoma de Madrid; 
Maciej Paluszyriski, Wroclaw University; 
Manos Papadakis, Washington University; 
Hrvoje Sikic, Washington University and the University of Zagreb; 
David Weiland, University of Texas; 
Guido Weiss, Washington University. 

Not all fourteen of these individuals were directly involved in the research 
we described in this paper. This is, however, the first of what we plan to be 
a series of expositions of the collaborative research conducted by this group. 

^ Other results have already been obtained and will be described in these 
. future publications. Each member of the Consortium has already made a 

contribution to the series. As stated above, it is only fair that each one of 
these researchers be considered as a collaborator for this article. We believe 
that these results, that are so closely connected, are best presented as a 
whole, rather as a number of papers whose inter-relations are not clearly 
explained. 

X.Dai and D.Speegle obtained their Ph.D. degrees at Texas A&M, R.Liang 
is a student of Dai, Q.Gu, D.Han, and S.Lu are students working with 
Prof.Larson at Texas A&M. G.Garrigos is a student at Washington Uni- 
versity, Hernandez, Paluszyhski and Weiland were students of Prof.Weiss at 
Washington University, Papadakis and Sikic are visiting faculty members at 

. Washington University. 
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Wavelet Sets in W 

Xingde Dai, David R. Larson, and Darrin M. Speegle 

ABSTRACT.     A congruency theorem is proven for an ordered pair of groups of homeomorphisms of 
a metric space satisfying an abstract dilation-translation relationship. A corollary is the existence of 
»avelet sets, and hence of single-function wavelets, for arbitrary expansive matrix dilations on £2(R") 
Moreover, for any expansive matrix dilation, it is proven that there are sufficiently many wavelet sets to 
generate the Borel structure o/R". 

A dyadic orthonormal (or orthogonal) wavelet is a function yf, e L2(l), (Lebesgue measure) 
with the property that the set 

{2!v(2"f-/): n,leZ] 

is an orthononnal basis for L2(R) (see [1, 2]).   For certain measurable sets, E, the normalized 
characteristic function -fe-XE is the Fourier transform of such a wavelet. There are several charac- 
tenzations of such sets (see [3] chapt. 4, and independently [5]). In [3] they are called wavelet sets 
in [5, 6, 7] they are the support sets of MSF (minimally supported frequency) wavelets 

Dilation factors on R other than 2 have been studied in the literature, and analogous wavelet 
sets corresponding to all dilations > 1 are known to exist ([3], Example 4.5, part 10). Matrix dilations 
(for real expansive matrices) on R« have also been considered in the literature, usually for a "multi-" 
notion of wavelet. The translations involved are those along the coordinate axes. The purpose of this 
article is to prove a general-principle type of result that shows, as a corollary, that analogous wavelet 
sets exist (and are plentiful) for all such dilations. In particular, "single-function" wavelets always 
exist This appears to be new. Theorem 1 seems to belong to the mathematics behind wavelet theory 
For this reason we prove it in a more abstract setting than needed for our wavelet results. Essentially 

forR" SyStCm COngmenCy Principle- The Seneral Proof is »o more difficult than thai 

We point out that the wavelets we obtain, which are analogs of Shannon's wavelet, need not 
satisfy the regularity properties often desired (see [8]) in applications. 

Let X be a metric space, and let m be a a-finite nonatomic Borel measure on X for which 
the measure of every open set is positive and for which bounded sets have finite measure. Let T 
and V be countable groups of homeomorphisms of X which map bounded sets to bounded sets and 
which are absolutely continuous in the sense that they map m-null sets to m-null sets. A countable 
group Gof absolutely continuous Borel isomorphisms of X determines an equivalence relation on 
the family B of Borel sets of X ,n a natural way: £ and F are Q-congruent (written E ~s F) if 
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there are measurable partitions {Eg: g e G) and {Ff g € Q] of E and F, respectively, such that 

Fo = g(EK) for each g e G, modulo m-null sets. 
If r > 0 and >■ € X, we write Br(y) := {x € X: ||* - y|| < r}, and abbreviate Br := Br(0). 
We will say that (V, T) is an abstract dilation-translation pair if (1) for each bounded set E 

and each open set F there are elements 8 € V and r € T such that r(E) C 5(F), and (2) there is a 
fixed point 0 for I? in X which has the property that if N is any nhood of 6 and E is any bounded 
set, there is an element 8 e V such that 8(E) QN. 

Theorem 1. .        . 
Ler X ß m,V,Tbe as above, with (V, T) an abstract dilation-translation pair, and with 0 

the V-fixed point as above. Let E and F be bounded measurable sets in X such that E contains a 
nhood of 6, and F has nonempty interior and is bounded away from 6. Then there is a measurable 
set G c X, contained in \J 8(F), which is both V-congruent to F and T-congruent to E. 

Proof.   We will use the term "P-dilate" to denote the image of a set Q under an element of V, and 
"T-translate" for the image of Q under an element of T. 

We will construct a disjoint family {Gu: i € N, j € {1,2}} of measurable sets whose V- 
dilates form a partition {F0} of F and whose T-translates form a partition {Ey} of £, modulo 
m-null sets. Then G = \J Gu will clearly satisfy our requirements. The Ith induction step will 

'J 
consist of constructing G,i and G;2- 

Let {a,-} and {#} be sequences of positive constants decreasing to 0. Let N\ C E be a ball 
centered at 6 with radius < ai such that m(E\Ni) > 0. Let En = E\N]. 

Observe that we may choose 5, eP,T,e T, so that (8~l o r,)(En) is a subset of F whose 
relative complement in F has a nonempty interior. This is possible because since the interior of F is 
nonempty there is a 81 -dilate of F which contains a ball large enough to contain some n -translate 
of E with ample room left over. Now set F„ := (if1 o n)(En). (In this context, clearly we may 
choose Si and n such that, in addition, the n-translate of E is disjoint from any prescribed bounded 
set — a fact that will be useful in the second and subsequent steps.) 

Let Gu := Ti(En) = <5i(Fn). Since 8\ is a homeomorphism of X which fixes 6, G\\ is 
bounded away from 6 since F\ i is. Let Fn be a measurable subset of F of positive measure, disjoint 
from Fi i, such that the difference F\(Fn U Fn) has a nonempty interior and measure < ßi. Choose 
Y\ € V such that yi(Fi2) is contained in N\ and is disjoint from Gu. Set Ei2 := yi(Fi2), and set 
Gi2 := En- The first step is complete. 

For the second step, note that since F is bounded away from 6, Ni\E12 contains a ball N2 

centered at 9 with radius < a2 such that JVi\(Ei2 U N2) has positive measure. Let 

E21 := Wi\(Ei2 U N2) = E\(En U E12 U N2). 

Choose 82 e V, x2 e T, using similar reasoning to that used above, such that (if o T2XE21) is a 
subset of F\(Fn U Fi2) whose relative complement in F\(Fn U F12) has a nonempty interior, and 
for which r2(E2i) is disjoint from Gu andGi2. LetF2i := (if' oT2)(E2i),andletG2i := T2(£2I). 

Choose a measurable subset F22 C F of positive measure disjoint from F\ 1, Fi2, F2\ such that 
F\(Fn U Fn U F2i U F22) has a nonempty interior and measure < ß2. Noting that G\\, G\2, G2\ 
are bounded away from 6, choose yi^V such that y2(F22) is contained in N2 and is disjoint from 

Gu. G12, G2i. Set £22 := YliFii)^ and let G22 := £22. 
Now proceed inductively, obtaining disjointed families of sets of positive measure {£,-_,•} m £, 

{Fij} in F, and {Gy}, such that 

Tf^Gn)  =  En, Gi2 = Ei2,8-\Gn) = Fi, 

y-\Gi2)  =  F/2, for i = 1,2,... and j = 1,2. 
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We have £\(U£,;) = {£}, a null set, since a, -*• 0, and F\(UFU) is a null set since ßi -+ 0. Let 
G = UGu  Since &,, y, e V we have G,, € F for all i, ;. So G c |J «5(F). The proof is complete. 

G 
Remark. Suppose K is any bounded set that is bounded away from 6 (i.e., K is contained in an 
annulus centered at 6). Then the set G in Theorem 1 can be taken disjoint from K. This follows 
immediately from the way the sets Gu in the proof are constructed. Moreover, for each n a disjoint 
n-tuple can be constructed, all of which satisfy the properties of G and K above. To see this, mimic 
the proof of Theorem 1, at each step constructing C\y..., G?. simultaneously, making sure that 

they are disjoint from each other and also from all of the previous Gh
lk that have been constructed 

to that point. This construction can easily be modified to yield an infinite pairwise disjoint family 

{G*}£i-       Ü 

We will now relate Theorem 1 to wavelets. 
Let 1 < m < oo, and let A be an n x n real matrix which is expansive (equivalently, all 

eigenvalues have modulus > 1 (see [9])). By a dilation-A orthonormal wavelet we mean a function 

yff e L2(R") such that 

(*) {|det(A)pyG4nr-(/i,/2 In)1'- n./eZ}, 

where t = (tu..., tn)
!, is an orthonormal basis for L2(W; m). (Here m is product Lebesgue 

measure, and the superscript "r" means transpose.) 
It is useful to introduce dilation and translation unitary operators. If A e M„(R) is invertible 

(so in particular if A is expansive), then the operator defined by 

(DAf)(t) = \detA\?f(At), 

f € L2(R"), t € R", is unitary. For 1 < i < n, let 7/ be the unitary operator determined by 
translation by 1 in the Ith coordinate direction. The set (*) is then 

{Dk
ATll ...T^r-kJieZ). 

The term orthogonal wavelet has been extended in the literature to include a "multi" notion, 
which is an orthonormal p-tuple (/i fP) of functions in L2(R"), each of which separately 
generates an incomplete orthonormal set under the system of unitaries, and which together form an 
o.n. basis. 

Let T be the Fourier-Plancherel transform on L2(R), normalized so it is a unitary transforma- 
tion. For /, g 6 L1 (R) n L2(R), 

.F(/)(5)   :=   -1= f e~is'f(t)dt 
V2Jr m 

?-\g)(t)   =   ^L f eis'g(s)ds. 

On L2(W) the Fourier transform is 

where s o t denotes the real inner product. Write / = Tf, and for A 6 B(W) write A := TAT~X. 
We have DA = D{A,r\(= D~} - D*,), where A' is the transpose of A, and 7) = M£-,v the 

multiplication operator on R" with symbol f(s\ ,...,sn) = e~iS>. 

and 
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By a dilation-A wavelet set we will mean a measurable subset of R" (necessarily of finite mea- 

sure) for which the inverse Fourier transform of (m(£))~* XE is a dilation-A orthonormal wavelet. 
We will say that measurable subsets H and K of R" are A-dilation congruent if there exist 

measurable partitions {Hi} of H and {K,} of tf such that K, = AlHh I € Z, modulo Lebesgue 
null-sets. Write H ~jA AT. We will also say that £, F are 2it-translation congruent (write this 
E ~l2jr F) if there exist measurable partitions {£;: Z = (Zi,..., Z„) £ Z"} of £ and {Ff. Z € Zn} of 
F such that F; = £/ + 2TTZ, Z e Z", modulo null sets. If W is a measurable subset of R" which is 
2TT-translation congruent to the n-cube £ = [-it, it) x • ■ • x [-jr, it), it is clear from the exponential 

form of 7) that {7* T1^ ... fl
n" ■ (m(W))"i XW- (h WeZ") is an o.n. basis for L2(W). 

If A is a strict dilation, so || A" Ml < l.thenABi 2 Bu-iri. It follows that if F = AB\\B\, 
then [AkF: k e Z} is a partition of R"\{0}. If A is expansive, then A is similar to a strict 
dilation. Therefore, A = TCT-1 for T a real invertible n x n matrix, and with ||C Ml < 1- 
If FA = T{CB\\Bi), then {AkFA}k€z is apartition of R"\{0}. Therefore, an expansive matrix has 
a measurable complete wandering set FA C R". It follows that L2(FA), considered as a subspace of 
L2(R"), is a complete wandering subspace for DA. That is, L2(R") is the direct sum decomposition 
of the subspaces [Dk

A L
2(FA)}ke%. Moreover, it is clear that any measurable set F' with F' ~&A FA 

has this same property. 

Corollary 1. 
Let 1 < n < co and let A € M„(R) be expansive. There exist dilation-A wavelet sets. 

Proof. Let A be the group of homeomorphisms of R" generated by the map x -+ A'x. Let 
T be the group of homeomorphisms of R" generated by the translations in each of the coordinate 
directions by the integral multiples of lit. Then A-dilation-congruency means .A-congruency and 
27r-translation-congruency means T-congruency. Moreover, it is clear that {A, T) is an abstract 
dilation-translation pair on R" in the sense of Theorem 1, with 0=0. 

By Theorem 1, a measurable set W exists with W ~sA, FAt and W ~Tto £, where £ = 

[-rt, n)n. As remarked above, the set {f[] TlJ ... %" $w: lj € Z, 1 < j < n) is an o.n. basis for 

L2(W), (with xj/w = (m(W))-?xw)- Therefore, since L2(W), regarded as a subspace of L2(R"), 
is wandering for D := DA — D~A), the set 

{Dkf[l ... fl
n"ii: k e Z, lj eZ,\ <j <n] 

is an o.n. basis for L2(R"), and W is a wavelet set for A. (Moreover, by Remark 5 it follows that 
there is a countably infinite pairwise disjoint family of such sets.)       D 

A Hardy dyadic orthonormal wavelet is a function V € L2(R)forwhich{25i/f(2"f-£): n,l € 
Z} is an o.n. basis for the Hardy space of L2-functions / whose Fourier transform / has support 

contained in [0, oo). An example is ^ = (2n)~?X[2nAn)- Therefore, [2it, 4n) is a Hardy wavelet 
set. This idea can be generalized. 

Corollary 2. 
Let A € M„(R) be expansive, and let M C R" be a measurable set of positive measures that 

is stable under A' in the sense that A'M = M. Suppose M Q FA< has a nonempty interior. Then 
there exist measurable sets W CM with the property that, iffw ■= (2it)~^xw, then 

{Dk
AT

l
l\..T!,"i,w:k,lieZ} 

is an orthonormal basis for Jr~i(L2(M)). 

(Wavelets of this type were studied in [4] for the dyadic, n = 1 case, where they were called 
subspace wavelets. The concept is that they are wavelets for proper subspaces of L2(R).) 
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Proof. Apply Theorem 1, with F = MDFA, and E = [—jr, n) x • • • x [-it, it), obtaining W with 
W~r2T £andW~^, F. Since M is A'-stable, W C M. Also, {(A')*W: A: e Z} is a measurable 

partition of M. Therefore, an argument similar to that before shows that [DAf,'1 ... fln\j/w: k, /, e 
Z} is an o.n. basis for L2{M).       □ 

The following result points out that the set of wavelet sets for any dilation is large. We will 
call an orthonormal wavelet for a dilation-factor a > 1, a e R, an a-adic orthonormal wavelet. 

Corollary 3. 

Let A e M„(R) be expansive. Every measurable subset ofRn is a countable union of inter- 
sections of pairs of dilation-A wavelet sets. The family ofBorel dilation-A wavelet sets generates 
the Borel structure ofW. 

Proof. We first prove the a-adic case. Let a > 1 be arbitrary. Let d(-) denote the projection map 
from R\{0} onto F = [-a, -1) U [1, a) determined by a-dilation, and let t(•) denote the projection 
map from R onto E = [-it, it) determined by lit -translation. That is, for x e R\{0}, d(x) is the 
unique a-dilate of x contained in F, and for x e R,t(x) is the unique 2TT-translate of* contained in 
E. Note that E ~T2T [0, 2it) ~T2„ ([-2TT, it) U [it, 2ir). Suppose AT is a measurable set in R\{0} 
for which the restrictions d\K and t\K are one-to-one. Let £0 = E\t(K) and F0 = F\d(K). If £0 

contains a nhood of 0 and F0 has a nonempty interior then by Theorem 1 and Remark 5 there are 
disjoint measurable sets Gi,G2 with G, ~T2;r £0 and G, ~ja F0, ( = 1,2. (By the construction 
in the proof of Theorem 1 (and Remark 5) if K is Borel, then these can be taken Borel.) Let 
Wj^ = K U G,. Then W, ~T2;r £ and Wt ~&a F. So each W-, is an a-adic wavelet set. We have 
K = Wi n W2. We will show that each measurable set G C R has a measurable partition {G,}, 
where each Gj has the property of K. 

Observe that if AT has the property in the above paragraph, i.e., d(-) and t (•) are 1 -1, £0 contains 
a nhood of 0 and F0 has nonempty interior then every subset of K also has the property. 

Suppose 0 < a < ß, and let J = [a, ß]. Ifß-oc < lit then t\j is 1-1, and if ß < aa then rf|y 

is 1-1. If, in addition, J contains no integral multiple of 27T, then J satisfies the property of K above. 
Let J+ be the set of all intervals [a, ß] withO < a < ß, ß < min{aor, a + 27r}, [a, ß]r)2irZ = 4>,a 
and ß rational. Observe that U{7: J e J+} = (0, oo)\2^Z. Let J_ = {[-ß, -a]: [a, ß] e J+), 
and J = J+UJ_. Then \J J = R\2nZ. Let JUJ2,... be an enumeration of J, and let Li = 7j \ 

and 

Ly+i = Jj+i \(/j U • • • U 7,-)    for   j > 1. 

Then {£;: ;' e N} is a measurable partition of R\27rZ. 
Let G c R be a measurable set. Clearly we may assume G n 2jrZ = ^>. Let Gj = G D L ■. 

Then {Gj} is a measurable partition of G satisfying our requirements. If G is Borel, then each G, is 
Borel. J 

We adapt the previous proof to the general case. Replace F with FA<, £ with the n-cube 
[-71, IT) x ■ • • x [-7T, 7T), and d(-) and r(-) with the corresponding projections from R"\{0} to FA< 
and from R" to £, respectively. If K c R" has the property in paragraph one relative to these, the 
same argument shows that K is the intersection of two dilation-A wavelet sets. The boundary dC 
of the «-cube C = [0,2n) x ■ • • x [0, 2TT) is an m-null set. Let Q = U{(dC) + 2ixt. I e Z(n)}. 
By construction dFA, is also an m-null set. If J = Br(y) is a ball in R" contained in one of the 
annuh (A') FA< and which is also bounded away from Q, then J satisfies the property of K. Let J 
be the set of all such balls that have rational center and radius. Enumerate J, define Lj as above, 
and observe that {£,: j e N} is a partition of R" modulo a null set. As above, if G c R" is a 
measurable, the partition [G n LJ: j e N} satisfies our requirements.       D 

Remark.   Theorem 1 can be improved in several further ways. 
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• 1. It is not necessary that m be nonatomic in Theorem 1. All that is needed is that {9} is 
not an atom form. 

• 2. The hypothesis that £ contains a nhood of 6 in Theorem 1 can be replaced with the 
hypothesis that for each e > 0 there exists S e V such that 8(F) c £ n B((9). If we let 
F = U{<5(£): S e T>} U {6}, then this is equivalent to the requirement that E contain a 
subset of F which is a nhood of 6 in the relative topology of F in X. Remark 5 generalizes 
as well. 

• 3. Theorem 1 remains true, in the general form of Remark 5 and 1, 2 above, if we drop 
the hypotheses that E and F are bounded and F is bounded away from 6. To adapt the 

00 00 

proof, write E = (J £,-, F = \J Ft, {£,}, {£,} disjoint, bounded, £, bounded away from 
;=o ;=o 

6, and such that £o and £o play the role of £, F in the proof of Theorem 1; so £o contains 
a nhood of 6 and £o has a nonempty interior. Then, for k > 1, in the A-1*1 induction step 
(in which Gk\ and Gki are constructed), replace £ with £o U E\ U • • • U £* and F with 
£o U F\ U • • • U Fk. The proof, thus modified, is easily seen to be valid. 

D 
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Abstract 

This article concerns a functional analytic approach to cer- 

tain aspects of the theory of orthonormal wavelets and repre- 

sents some of the pure mathematics underlying wavelet theory. 

Wavelet sets have been useful in operator-theoretic interpola- 

tion of wavelets and in smoothing techniques for wavelets, as 

well as for pointing out the existence of single function wavelets 

in higher dimensions. We give some new concrete examples of 

wavelet sets in the plane and in Rn, both for dilation factor 2 

and for certain other expansive dilation matrices. We also re- 

view the state of the subject since our first paper, including some 

examples that have been worked out by others. We give a proof 

of the existence of subspace wavelets corresponding to dilation 

factor 2 for arbitrary dilation-invariant subsets of W of positive 

Lebesgue measure. This theorem is new to the literature and 

has not been published elsewhere. 
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1    Introduction 

In the article [4] the authors proved the existence of single-function 

orthonormal wavelets in L2(Rn) for n > 2. If .4 is any real expansive nx 

n matrix (equivalent^, all eigenvalues of .4 are required to have absolute 

value > 1), then the main result of [4] shows that orthonormal wavelets 

exist for the dilation factor .4. That is, there is a single function yf <E 

L2(Rn) for which 

{\detA\Tip(Amt-e): meZJeZin)} (1.1) 

is an orthonormal basis of L2(Rn). This was apparently somewhat of 

a surprise, because prior to this it was suspected by several researchers 

that functions T/> satisfying (1.1) did not exist, even for the special case 

where .4 = 2 (two times the n x n identity matrix). This latter is known 

as the dyadic case, and it has been regarded by many to be the case of 

maximum interest since it is strictly analogous to the one-dimensional 

dyadic case. 
The wavelets considered in [4] have the form 

for some measurable subset of R", where T is the n-dimensional Fourier 

transform on L2(Rn). (See section 3.) These are called MSF (minimally 

supported frequency) wavelets in the literature (see [8]). The sets E 

which are the support sets of MSF wavelets are called wavelet sets. 

MSF wavelets can be regarded as generalizations of Shannon's wavelet 

in the one-dimensional dyadic setting. The Shannon wavelet set is 

[-27r,-7r)U[7r,27r). 
While the methods used in [4] were constructive they did not di- 

rectly yield examples of an elegant nature. So no "concrete" exam- 

ples were included in [4]. In response to this, Soardi and Weiland [18] 

constructed several examples in the plane of an interesting fractal-like 

character. Two others were independently constructed by Dai and Lar- 

son for inclusion in [5] in response to a kind suggestion of the referee. 

These were all for the case A = 2.  One purpose of this article is to 



review these results, and in addition, to give some new examples for 

dilation factors different from 2. Another main purpose is to give a 

proof that "subspace"' wavelets always exist for dilation factor 2. This 

theorem generalizes results in both [6] and [4]. 
Before continuing further with this article it is important that we 

take the opportunity to describe some of the rationale behind this work. 

Indeed, from an applications-oriented point of view, wavelet sets and 

their associated MSF wavelets are pathological in the sense that they 

have poor localization properties and have discontinuous Fourier trans- 

forms, and in addition, while many are affiliated with a multiresolution 

analysis (MRA) there are many that are not. Indeed, apart from the 

Shannon wavelet (which is MRA) the others of this type which ap- 

peared in the early literature, due to, for instance, Mallat and Journe, 

were given specifically to point out such instances of pathology. How- 

ever, the role they play in our work is not one of pathology. In a real 

sense they play the role of basic building blocks in what is turning out 

to be a global approach to some of the pure mathematics underlying 

wavelet theory. They can lead to the construction of wavelets having 

good regularity and localization properties, in particular. 

The basic idea in the role of wavelet sets in the operator-theoretic 

interpolation method given in [5] and discussed in [12] is just that, 

given a finite (or possibly even countably infinite) family of wavelet 

sets, there is a simple operator-theoretic criterion for when a given 

bounded measurable function with support contained in the union of 

the wavelet sets is the Fourier transform of a wavelet. In the finite 

family case, one simply writes down a bounded linear operator using 

a concrete formula in terms of the values of the given function on the 

individual wavelet sets. The function is the Fourier transform of an 

orthonormal wavelet if and only if the operator that is constructed is 

unitary, of a Riesz wavelet if and only if the operator is invertible, 

and of a frame wavelet if and only if the operator is a co-isometry. In 

many cases it is exceptionally difficult to analyze these properties of 

the operator. But in special cases, which are more common than might 

be expected, this can be done using operator theory and methods of 

C*-algebra. This leads to new families of wavelets, and in some cases, 



famillies with good properties. In particular, in Chapter 5 of [5] it was 

shown that the classical Meyer-Lemarie class of orthonormal wavelets 

could be derived in this way by interpolating between two MSF wavelets 

in the class. 
Another completely independent way of using wavelet sets and MSF 

wavelets as basie building blocks in a unified wavelet theory is given 

in the series [7, 9, 10] by Fang, Hernandez, Wang and Weiss, and is 

also described in the recent book [8] by Hernandez and Weiss, in which 

they developed techniques of smoothing appropriate MSF wavelets to 

obtain wavelets with better regularity properties. They showed, in 

particular, that the Meyer-Lemarie class could be derived by smoothing 

the Shannon wavelet in this way. 
In concluding this section, we note that in [1] Auscher showed, in 

particular, that no single-function orthonormal wavelet for dilation fac- 

tor A = 2 in dimension greater than one could be MRA or could have a 

Fourier transform that satisfied reasonable regularity hypotheses. Thus 

MSF wavelets supported on wavelet sets such as in Figure 1 and Fig- 

ure 2 can not be completely smoothed.  However, these sets are still 

useful in the theory because wavelet sets, and MSF wavelets, offer, due 

to their simplicity, a large number of concrete examples in the mathe- 

matical theory of wavelets that are convenient in our operator-theoretic 

approach for hands-on computation in testing hypotheses.   As such, 

they have been especially good for the purpose of developing intuition 

concerning theorems and problems. Moreover, we have recently been 

able to show that single-function MRA wavelets and smoothing tech- 

niques do, in fact, exist in higher dimensions for certaiiunatrix dilation 

factors other than A = 2 (the pure dyadic case). The interested reader 

can verify that, in fact, Figure 9 represents an MRA wavelet set in the 

plane. Further work in this direction will be the subject of a subsequent 

paper, and so will not be reported on in the present article. 

2    Examples 

The proof of the existence of wavelet sets in the paper [4], while con- 

structive, yields wavelet sets which are unbounded, have infinitely many 



components, and no symmetry. In this section, we will give several ex- 

amples of wavelet sets which are more aesthetically pleasing as well as 

having more potential for application. The first two are for the matrix 

( "       ) and are the ones given in section 6.6 of [5]. Example 2.1 is the 

same as Example 6.6.1 in [5], except for a larger diagram (Figure 1). 

The second is Example 6.6.2 in [5], but the diagram (Figure 2) is new: 

no diagram was given for this example in [5]. These wavelets are of the 

type in [18]; that is, in some sense, the examples consist of infinitely 

many pieces pasted together in a clever manner. We encourage the 

reader to consult the interesting article [18] for more wavelet sets and 

diagrams of this type. 
It came as somewhat of a surprise that if we allow the matrix A to 

have a rotational component, then we can construct wavelet sets which 

have additional nice properties. For example, we can construct wavelet 

sets which are the union of two convex bodies, a wavelet set which has 

only one component, and even a wavelet set which is a square. These 

are Examples 2.3 and 2.4 which are taken from the Ph. D. thesis of the 

third author [16], and Example 2.5 which was obtained by the third 

author and Qing Gu, who kindly allowed us to include it in this article. 

We thank him. 
We recall here the following characterization of wavelet sets. This 

was independently obtained by Fang and Wang [7] and by Dai and 

Larson [5] for the one-dimensional case, and is contained in [4] and 

described in [18] for the n-dimensional case. 

Given a linear isomorphism A : Rn -> R", a measurable set W C Rn 

is a wavelet set with respect to A if and only if 

{A\W) :i€Z}     and     {W + 2irk : k € Zn} 

are both partitions of R". That is, if and only if the set W tiles Rn by 

translations and by dilations. 

The way that the sets in Figure 1 and Figure 2 were constructed 

was by starting with a set E which tiles R2 by translations, then by 

translating pieces of E so that the resulting set tiles R2 by dilations. 

The construction of wavelet sets with respect to I j in [5], [18] 
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Figure 1. Wavelet set Wl in I2 

and [4] were all constituted using some type of iterative scheme. Such 
schemes yield wavelet sets which, in some sense, consist of infinitely 
many pieces. However, it is interesting to note that the example given 
in Figure 2 consists of only three connected components. The authors 
do not know if it is possible to construct a wavelet set with respect to 
21 (two times the identity matrix) which consists of only one connected 
component. (For n = 1, there clearly is no such wavelet set, and it 
seems unlikely that there is one for n = 2. For other n, it is not clear to 
the authors what the conjecture should be.) Also, the sets in Figures 1 

and 2 are bounded. 

Example 2.1 The four corners set. (Figure 1.) 



Figure 2. Wavelet set W2 in R2 

The diagram (Figure 1) for this was given in [5]. The proof we sketch 
is different and more intuitive, although less formal. Let Wn be the 
portion of W, contained in the first quadrant. We will describe Wn in 
detail, and the rest will be obvious by symmetry. 

Define an increasing sequence of numbers by d0 := 0, and d ■= 
(1 + 4-i + ... + 4-"«)f for n > 1. Then, dn+l := dn + 4-«f and dn = 
5(1-4 n)7r for n > 0. Observe that for n > 0 we have dn + 2TT = 4rfn+1. 
Now for n > 0, consider the sequence of squares 

Sn:=[dn,dn+1) x [dn,dn+l). 

In particular we have S0 = [0, f) x [0, f) and 5X = [f, f) x [s §s) It 
follows that 5n + (27T,2TT) = 45n+1 for all n. Let 5 := USU^n'lien, 



S + (27r,27r) = 4(ie=1Sn). 

Note that S is contained in the square [0, TT) X [0, IT). The difference set 

[0,TT) x [0.TT)\5 

is the part of W-'ifinside [0, TT) x [0.TT), and the translate (5 + {2TT, 2TT)) 

is the part of Wn outside [0,vr) x [0,7r). See Figure 1. That is, 

Wn = ([0,TT) x [0,TT) \ 5) U (5+ (27T,27r)). 

By our construction, Wu is 27r-translation congruent to [0,7r) x [0,7r). 

Moreover, since 

i(5+ (27T,27r)) = U~ !5„ = 5\S0 
4 

the set Wn is also 2-dilation congruent to the set 7\ := [0, TT) x [0,7r) \ 

[0,|)x[0,f). 
Now, construct W12, Wl3t Wu and T2, T3, T4, in the quadrants 

2, 3 and 4 respectively, by symmetry. Then, W\ = U$=1WU. Let 

T := UJ=1Ti = l-ir.Tr) x [-TT,TT) \ [-f,|) x [-|,f). Then ^ is 
27T-translation congruent to the square [—TT, TT) X [—TT, TT) which tiles R2 

by 27r-translation, and Wx is also 2-dilation congruent to T, a square 

dyadic torus, which tiles R2 by 2-dilation. This proves that Wx is a 

dyadic wavelet set. H 

Example 2.2 The wedding cake set. (Figure 2.) 

This example was given in [5] as example 6.6.2, but without a diagram. 

It is a construction very similar to Example 2.1. The proof here is 

different from [5]. Let W2R be the portion of W2 contained in the 

right half-plane. The left half W2L will be obtained by symmetry. The 

idea is to excise from the rectangle [0, TT) X [-TT, TT) an infinite union of 

disjoint adjacent rectangles which are stacked (sidewise here) like the 

layers of a wedding cake, and to translate this to the right by 27r. With 

appropriate care in construction, this will yield a wavelet set. 

Let d„, n > 0, be the same sequence of numbers as in Example 2.1. 

For n > 0, consider the rectangles 

8 



In particular. G0 = [0, f) x [-§, f) and G, = [§, f) x [_|, £). Then 

Gn + (2~. 0) = 4Gn+1 for all n. Let G := U~ 0Gn. Then 

~""     G + (27r,0) = 4(U-1Gn). 

Observe that G is contained in the rectangle [0,7r) X [-7r,7r), and the 

difference set ([0,TT) X [—TT, TT) \ G) is the part of W2R inside [0, TT) X 

[-7T.7T). See Figure 2. Also, the translate (G + (2TT,0)) is the part of 
W2R outside [0,7r) X [—TT, 7T). SO 

W2Ä = ([0, TT) x [-7T, TT) \ G) U (G + (2TT, 0)). 

Then W2R is 2^-translation congruent to [0,7r) X [—TT, 7T). And, since 

^(G+(27r,0)) = U^=1Gn=iG\Go 

W2R is also 2-dilation congruent to TR := [0,TT) X [—TT, 7r) \ [0, =) x 

[-f, f). Now construct W2L and TL in the left half-plane symmetrically. 

Then W2 = W^2Ä U W2L. Note T = TÄ U TL is the same square torus as 

in Example 2.1. As in Example 2.1, W2 is 2?r-translation congruent to 

[-7T, 7r) x [-7T, 7r) and 2-dilation congruent to T; hence, W2 is a dyadic 
wavelet set. ■ 

In general, it is more difficult to construct a wavelet set directly, 

without using approximation techniques as in [4], [5] and [18]. However, 

if we allow a rotational component in our matrix, then w£ can directly 

construct some simple examples of wavelet sets. The way the following 

example was constructed was by trial and error. Many different tilings 

of R2 by dilations were considered before one was discovered which also 
tiles R2 by translations. 

Example 2.3 A wavelet set in the plane with two convex components. 

We define Sx  := conv{(|7r,0), (§*,<)), (0, -2TT), (0, -TT)} and S2  := 
conv{((-|7r,0),(-|7r,0), 

(0,7r),(0,27r)}.   Then W3 = Si U S2 is a wavelet set for the matrix 



Figure 3. Translation tiling by the wavelet set W3 

A = (_^ ~ )'.that is'rotation by 2and dilation by ^ (See 

Figure 3 and Figure 4.) 
The shaded portion of Figures 3 and 4 is the set W3 = Si U 52. The 

other polygons in Figure 3 give the tiling of the plane with respect to 

translation, while the polygons of Figure 4 give the tiling of the plane 

with respect to dilation by A. ■ 
We now give an example of an iterative scheme which yields a 

wavelet set with only one component. 

Example 2.4 A wavelet set in the plane with one connected compo- 

nent. 

Let A = (      _  4 ); tnat is' rotation by § clockwise and dila- 

tion by 2-1'4. Then, the set E = conv{(-47r, 0), (-2TT, 0"), (0, 2TT), (0, 4TT)} 

tiles R2 by dilations; the tiling is similar to that of Figure 4. 
Now, it is clear that E does not tile R2 by translations, but the larger 

set Ex = conv{(-47r,0),(-27r,0),(0,47r),(27r,47r)} does. Translating 

the piece of Ex in Quadrant 1 to the left by 2TT and combining it with 

E yields a set which still tiles R2 by translation, but its dilation by 

powers of A has multiplicity. That is, the dilations by powers of A fail 

to be disjoint. (See Figure 5.) Call this new set F. 

10 



Figure 4. Dilation tiling by the wavelet set W3 

Figure 5. The set Ex 
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Figure 6. The set E2. 

Therefore, dilate the triangle shaded in Figure 5 by | and remove 

it from F, and observe that the new set E2 (Figure 6) tiles R2 by di- 

lations. Note that E2 does not tile R2 by translations; we are lacking 

the shaded piece indicated in Figure 6. So, we translate it to the left 

by 27T, and continue the process. For 0 < i < oo, we define rect- 

angles Yi by Yi =conv{(27r(£ - 1),2TT£), (2TT(£ - 1),2TT£), (2TT(X - 

2),27ri),(27r(i - 2),2TT£)}. Then, W, = U£0Fi is a wavelet set for 

the matrix A. The proof that this is a wavelet set is not hard and is 

outlined in Figure 7 and Figure 8. 
The shaded portions of Figure 7 and Figure 8 correspond to the set 

W4) while the other sets demonstrate the tiling with respect to dilation 

and translation respectively. While only the dilation tiling of quadrant 

II is given, the tilings of the other quadrants are appropriately scaled 

isomorphs of the given tiling. Likewise, only the translation tiling of 

the strip {{x,y) : 0 < y < 2ir} is given; the tilings of the other strips 

are similar. ■ 

Example 2.5 A square wavelet set. (Due to Q. Gu and D. Speegle) 

Let W5 be the square Wb  = conv{(-f, f), (-f,-f),(-?, f)> 

(-^-^L)}, and let the dilation matrix be A =  (        Q  V   This 
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Figure 7. Dilation tiling by the one component wavelet set W4 

Figure 8. Translation tiling by the one component wavelet set W4 
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Figure 9. Dilation tiling by the square wavelet set W5 

square has length 2TT, SO it tiles R2 by translation. It is also tiles R2 by 

dilations, as is clear from Figure 9. ■ 
We note again that it is not known how nice wavelet sets in the 

2    0 

0   2 
can be.   For ex- plane with respect to the dilation matrix 

ample, it is not known whether there is a wavelet set with respect to 

(2 ] which is the union of finitely many disjoint rectangles. While 

this type of wavelet set may not have any applications, such simple 

wavelet sets have an inherent beauty. (Note that a square annulus tiles 

R2 by dilation, so dilations alone do not form an obstruction. Also, 

by the construction in [4], there is a wavelet set which is the union 

of infinitely many rectangles, each of which has positive, distance from 

every other rectangle in the wavelet set.) 
Some negative evidence is the following: Let W C Rn be the union 

of two compact, convex bodies in R". Then, either W contains a neigh- 

borhood of the origin, or there is a pointed cone C of positive measure 

in Rn such that C n W = 0. In the first case, W cannot be a wavelet 

set. In the second case, R" \ C is invariant under the matrix 21. So, 

{\J%_o02
i(W)) n C = 0. Hence, W cannot be a dilation generator of 

Rn; in particular, W is not a wavelet set. 

14 



3    Dyadic Subspace Wavelets 

We require some material from [4]. The first is an abstract dual- 

dynamical system congruency principal which was our main tool in 

proving the existence of wavelet sets in dimensions n > 2. 

Let A' be a rrietric space, and let m be a a-finite nonatomic Borel 

measure on A' for" which the measure of every open set is positive and 

for which bounded sets have finite measure. Let T and V be countable 

groups of homeomorphisms of X which map bounded sets to bounded 

sets and which are absolutely continuous in the sense that they map m- 

null sets to m-null sets. A countable group Q of absolutely continuous 

Borel isomorphisms of X determines an equivalence relation on the 

family B of Borel sets of X in a natural way: E and F are G-congruent 

(written E ~g F) if there are measurable partitions {Eg: g e G} and 

{F9- 9 e G} of E and F, respectively, such that Fg = g{Eg) for each 
g € G, modulo m-null sets. 

If r > 0 and y € X we write Br(y) := {x € X: \\x - y|| < r}, and 
abbreviate BT := Br(0). 

We will say that (P, T) is an abstract dilation-translation pair if (i) 

for each bounded set E and each open set F there are elements 5 € V 

and r € T such that r(E) C 5(F), and (ii) there is a fixed point B for 

V in X which has the property that if N is any nhood of B and E is 

any bounded set there is an element 6 e V such that 5(E) C N. 

Theorem 3.1 Let X,B,m,V,T be as above, with (V,T) an abstract 

dilation-translation pair, and with B the V-fixed point as^above. Let E 

and F be bounded measurable sets in X such that E contains a nhood 

o/B, and F has nonempty interior and is bounded away from 8. Then 

there is a measurable set GCX, contained in |J 5(F), which is both 

V-congruent to F and T-congruent to E. 

We will now relate Theorem 3.1 to wavelet sets. 

Let 1 < m < oo, and let A be an n x n real matrix which is 

expansive (equivalent^, all eigenvalues have modulus > 1 (cf. [15])). 

By a dilation-^ orthonormal wavelet we mean a function V € L2(Rn) 
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such that 

{\det(A)\HiAnt-(kJ2,.--JnY): n,Z€Z}, (3.1) 

where t = (*i,. ■ ..*«)', is an orthonormal basis for L2(Rn; m). (Here m 
is product Lebesgue measure, and the superscript "f means transpose.) 

By a wandertny set for A we mean a measurable subset SCf 
which has the property that {AnS: n € Z} is a measurable partition 

ofRn. 
It is useful to introduce dilation and translation unitary operators. 

If .4 € A/n(R) is invertible (so in particular if A is expansive) then the 

operator defined by 

(DAf)(t) = \detA\l>f{At), 

/ 6 I2(Rn), t G Rn, is unitary. For 1 < i < n let T{ be the unitary 
operator determined by translation by 1 in the ith coordinate direction. 

The set (3.1) is then 

{D*T|'...^: k,keZ}. (3.2) 

Let T be the Fourier-Plancherel transform on L2(R), normalized so 

it is a unitary transformation. For /, g £ L*(R) 0 L2(R), 

*ms)-=w«Le"*mdt 

and 

V27T JR 

On L2(Rn) the Fourier transform is 

™°y-=T^Ls*'°')mdm'      (3-3) 

where sot denotes the real inner product. Write / = Ff, and for A € 
£(Rn) write DA := FDA?'

1
. We have DA = D{At)-i(= D~A] = D\t), 

where A* is the transpose of A, and fj = Me-i.j, the multiplication 
operator on Rn with symbol /(si,..., sn) = e~">. 
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By a dilation-A wavelet set we will mean a measurable subset of R" 

(necessarily of finite measure) for which the inverse Fourier transform 

of (m(E))~~-\E is a dilation-.4 orthonormal wavelet. 

We will say that measurable subsets H and K of Rn are A-dilation 

congruent if there exist measurable partitions {Ht} of H and {KL} of 

K such that Ki^= AlHt, I € Z, modulo Lebesgue null-sets. Write 

H sA K. We will also say that E,F are 2n-translation congruent 

(write this E ~T2„ F) if there exist measurable partitions {Et: I = 

(/i, ...,/„) € 1n} of E and {F<: / € Zn} of F such that Ft = Et + 2TT/, 

/ € Zn, modulo null sets. If W is a measurable subset of Rn which is 

27r-translation congruent to the n-cube 

E = [—7T, 7T) X • •• X [-7T, 7r), 

it is clear from the exponential form of f3 that 

{f£f£...flr-{m{W))-lxw- (k,...,ln)eZn} 

is an o.n. basis for L2(W). 

If .4 is a strict dilation, so ||^-1|| < 1, then ABX D BllA-il{-i.  It 
follows that if 

F = AB^Bu 

then {.4*F: k € Z} is a partition of Rn\{0}. If A is expansive then ^ 

is similar to a strict dilation. So A = TCT~l for T a real invertible 
n x n matrix, and with ||C_1|| < 1. If 

FA = TiCB^B,), 

then {.4*F4}*eZ is a partition of Rn\{0}. So an expansive matrix 

has a measurable complete wandering set FA C Rn. It follows that 

L2(FA), considered as a subspace of I2(Rn), is a complete wandering 

subspace for DA. That is, L2(Rn) is the direct sum decomposition of 
the subspaces 

{DAL*(FA)}kez. 

Moreover, it is clear that any measurable set F' with F' ~SA FA has 
this same property. 

The existence of wavelet sets is now nearly immediate from Theo- 

rem 3.1. To facilitate exposition we include the proof from [4]. 
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Corollary 3.2 Let 1 < n < oc and let A € A/n(R) be expansive. There 

exist dilation-A wavelet sets. 

Proof. Let A be the group of homeomorphisms of R" generated by the 

map x -» ALx. Let T be the group of homeomorphisms of R" generated 

by the translations in each of the coordinate directions by the integral 

multiples of 27t. Then .4-dilation-congruency means ,4-congruency and 

2~-translation-congruency means T-congruency. Moreover, it is clear 

that {A. T) is an abstract dilation-translation pair on Rn in the sense 

of Theorem 3.1, with 0 = 0. 
By Theorem 3.1 a measurable set W exists with W ~sAt F.A< 

and W ~r,T E, where E = [—7r,7r)n. As remarked above, the set 

[f[lfl
2

2.. .fl
n
nww- lj € Z, 1 < j < n} is an o.n. basis for L2{W), 

(with vw = (m{W))-2Xw)- So since L2{W), regarded as a subspace 

of L2(Rn), is wandering for D := DA = D~A], the set 

{D^f;1 ...?!?$: k G Z, lj € Z, 1 < j < n} 

is an o.n. basis for L2(Rn), so W is a wavelet set for A. ■ 

The simplest type of subspace wavelet is a Hardy wavelet. We re- 

call the definition. A Hardy dyadic orthonormal wavelet is a function 

V € L2(R) for which {2?i/>(2nr. - £): n,l € Z} is an o.n. basis for the 

Hardy space of L2-functions / whose Fourier transform / has support 

contained in [0,oo). An example is $ = (27r)~2X[2*,47r)- So [27r,47r) 

is a Hardy wavelet set. This idea can be generalized. To facilitate 

exposition we abstract the following result and its proof from [4]. 

Corollary 3.3 Let A € M„(R) be expansive, andletAfC Rn be a mea- 

surable set of positive measure which is stable under A1 in the sense that 

AlM = M. Suppose M n FAt has nonempty interior. Then there exist 

measurable sets W C M with the property that, if ipw '■= {2n)~*Xw, 

then 
{Dk

ATil...T^w: Mi€Z} (3.4) 

is an orthonormal basis for T~l(L2{M)). 

Proof. Apply Theorem 3.1, with F = M n FAt and E = [—7r, 7r) X 

•••x [—7r,7r), obtaining W with W ~T2, E and W ~«5At F.   Since 
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.1/ is .4£-stable. IV C M. Also. {(.4f)*U": k € Z} is a measurable 

partition of M. So an argument similar to that above shows that 

[D\f[l ... fl
n"vw: k. U € 1} is an o.n. basis for L2{M).       ■ 

Remark 3.4 Wavelets of the type in Corollary 3.3 were studied in [6] 

for the dyadic ru^= 1 case, where they were called subspace wavelets. 

The concept is that they are wavelets for proper subspaces of L2' 

The new result that we wish to present is Theorem 3.7 below, which 

generalizes Corollary 3.3 in the special case of dilation matrix A = 

21 (the dyadic case) in the sense that the requirement that M D FAt 

has nonempty interior is completely eliminated. So M can be any 

dilation stable measurable subset of R" with positive measure. The 

"nonempty interior" condition can be replaced with Lebesgue density 

considerations. These are well-developed in the classical literature for 

scale factor 2 (that is, dilation factor 2), and readily extend to other 

scale factors (that is, scalar dilation factors). But there seem to be some 

real obstacles to extending this (density) theory to general expansive 

dilation factors. For this reason we elected not to include Theorem 3.7 

in our initial paper [4]. We felt at that time that the result was not 

as general as we wanted. However, since then several of our colleagues 

have indicated to us that the dyadic case is the case of greatest current 

interest and have suggested that our result should be published. Thus 

we include it in this follow-up paper.. We state, and prove, our result 

only for the dyadic case. We note, however, that the proof adapts 

trivially to the arbitrary positive scalar dilation factor case. 

Let E be a measurable set in Rn with m(E) > 0. Then E has a 

point of density y. 

This means (cf. [14, p. 261]) that 

r-x)     m(Cr(y)) K     ' 

where CT(y) is the n-cube with center y, edge length 2r, and edges 
parallel to the coordinate axes. Since the ratio of the measures of 
Cr(y) and BT(y) is independent of r (where BT(y) is the ball, center y, 
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or 

radius r) it is easy to see that this is equivalent to 

Umm{EnBriy))=l. (3-5) 
r-^o     m{Br{y)) 

HenCe Laum'Enft-(»»-l (3.6) 
-•-     k^oc    m{B7-k{y)) 

Fix a positive integer p.  Multiplying numerator and denominator by 

2"PW6haVe T.    mj^En^i^y)     1 f37l 

K»       m(B2p(2*+"y)) 

Limm(2fc+pEnß2p(2fc+py)) = m(B»). (3.8) 

(Where we write BT := £r(0).) So, given e > 0 there exists fc0 > 0 such 

that for k > kQ we have 

m(2k+pE n B2P(2fc+py)) > (1 - e)m(B2P). (3.9) 

Now suppose K is a prescribed bounded measurable set, and p is 

taken sufficiently large so that 

2P > diam(tf) + ^. 

Then since for any w € Kn we have dist(w,Zn) < ^, it follows that 

there is an n-tuple of integers zk = (s*(l), • • •, «*(")) € Zn so that 

K-^CB2P(2fc+py). 

Then for fc > fco, 

m(2fc+pEn(^-zfc)   >   m(2*+p£nß2f(2t+p!/)) 

-(m(B2,(2
k+py)\(K - zk))) 

> (1 - e)m{B2p) - m(Bv) + m{K) 

=   m{K)-em{B2P). (3.10) 

This proves, with an obvious "e" adjustment in the proof in case K is 

not bounded but has finite measure: 
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Proposition 3.5 Let E and K be measurable subsets of Rn. with 

m(E) > 0 and with m{K) < oc. Then given e > 0 there exists k0 € N 

5uc/i that for each k > k0 there exists zk € Zn suc/i that 

m{2kEn(K-zk))>(l-e)m(K). (3.11) 

Moreover, if 0 is^n-point of density for E, then we may take zk = O'for 

all k. 

Remark 3.6 It is clear that Proposition 3.5 remains valid with trans- 

lation by points in Zn replaced with translation by points in 2n ■ Zn. 

That is, with 'V in (3.11) replaced by u2nzk". This is the form we 
will need. 

To prove our main result we will appropriately modify the proof of 

Theorem 3.1 found in [4]. The reader will notice a similarity in proof, 

although significantly many more details are needed and the adaptation 

is not very straightforward. The interested reader may wish to directly 

compare the proofs to gain some insight. 

Theorem 3.7 Let n be a positive integer. Let M C Rn be a measurable 

set of positive measure with the property that M = 2M. Then there ex- 

ists a measurable setG C M with the property that, ifipG := (2TT)~%XG, 

then 

{2T2^(2mi - ey. mezje z(n)l (3.12) 

is an orthonormal basis for T~l{L2{M)). 

Proof. First note that det(2J) = 2n, so (3.12) fits the form (1.1). Let 

E = [-7r,7r](n) and let T = JB2(0)\B1(0). Let F = M n T. Then 

{2nF: m € Z} is a measurable partition of M, and F has positive 
measure. 

We will construct a disjoint family {Gy: i € N,;' € {1,2,}} of 

measurable sets whose 2-dilates form a measurable partition {Fy} of F 

and whose translates by vectors in 27r-Z(n) form a measurable partition 
of E. Then 

G-öidy. z€N,; = l,2} 
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will satisfy our requirements, in view of the exposition following The- 

orem 3.1. The zth induction step will consist of constructing Gn and 

Gl2- 
Let {Q2} and {3t} be sequences of positive constants decreasing to 

0 and with c*i < 7r. Let Ni be a ball centered at 0 with radius < ax. 

Let En = £VVi* .Then m(En) > 0. Let Fu be a measurable subset 

of F with measure strictly less than m(F).   By Proposition 3.5 and 

Remark 3.6, there exists ki € N and ix € Zn, so that 

m{2kiFn n (En - 2^)) > -m(Fn). 

Let Gu := 2kiFn n (Fn - 2^), let Fu := Gn + 2^, and let 

F11:=F11n2-fcl(^u-2^i). 

Then Fn C F and m(F\Fn) > 0. Also Fu C En, and 

m(Fu) = m(Gn) > ^m(Äi). 

Also Gu = 2fclFu. Now choose F12 C F, disjoint from Fn, such that 

F\(Fn U F12) has positive measure < ß\. Choose mi € N so that 

2~miFi2 is contained in Nx and is disjoint from Gu- (This is possible 

because Gn is bounded away from 0 since Fu C F.) Set 

Gi2 := Fi2 := 2~miFi2. 

The first step is complete. 
For the second step, which is slightly more complicated than the 

first, note that since F is bounded away from 0, A^F^contains a ball 
N2 centered at 0 with radius < a2 such that Ni\(Ei2UN2) has positive 

measure. Let 
F2i :=F\(FnUF12UiV2). 

Then m(E2i) > 0. Let F2i be a measurable subset of F\(FU UF12) for 

which 
m(F\(FnUFi2UF2i)) > 0. 

Since Gn and G12 are bounded and F is bounded away from 0 there 

exists ^N with the property that k > k2 => 2kF n (Gn U Gn) is 
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empty. Again by Proposition 3.5 and Remark 3.6, there exists faeN 

and (2 £ Z" witn ^2 > k2 
so that 

m(2*2F21 n (F21 - 2-£2)) > im(£21). 

Let 

--.   G21 := 2*2F21 n (F21 - 2TT£2), 

let £"2i 
:= G21 + 27r£2, and let 

F2l:=F2in2-k>(E21-27rt2). 

Then F21 is a subset of F\(Fn U F12) for which F\(Fn U F12 U F21) has 

positive measure. Also, £21 C E21, and 

m{E21) = m{G2l) > -m(E21). 

Also G2X = 2*2F2i. The condition k2 > k2 implies G2i is disjoint from 

Gu and Gi2. Choose a measurable subset F22 C F of positive measure 

disjoint from Fn, Fi2, F2X such that F\(Fn U F12 U F2\ U F22) has 

positive measure < ß2. Noting that Gn, Gu, G2\ are bounded away 

from 0, choose m2 € N such that 2"m2F22 is contained in N2 and is 

disjoint from Gn, G12, G2i. Set 

G22 -= F22 := 2 m2F22. 

Now proceed inductively, obtaining disjoint families of sets of posi- 

tive measure {FtJ} in E, {F^} in F and {G^}, such that for i = 1,2,... 

and j = 1,2 we have 

(i) Gil + 2irei = Ea, 

(ii) Gi2 = Ei2, 

(iii) 2-*G« = Fai 

(iv) 2m-Gi2 = Fi2, 

(v) m(F\(FuUF12U---UFilUFi2))</3i,    and 

(vi) m(Fil)>-m(F\(F11UF12U---UFi_uUFi_1>2UiV,)) 

> -m(E\(En U E12 U • • • U F:_u U £<_li2)) - |m(^) 

where JVj is a ball centered at 0 with radius < a{. 
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Since 3l -» 0 item (v) implies that F\(UFI;) is a null set. and since 

a, -► 0 then (vi) implies that £\(u£„) is a null set. Let 

G = U{G0-: i = 1.2 j = 1,2}. 

Then G is 2--translation congruent to E = [-TT, 7r]^n) by items (i) and 

(ii). It is also 2-dTlation congruent to F by items (iii) and (iv), and thus 

the 2-dilates of G form a measurable partition of M. The argument in 

Corollary 3.3 now applies, concluding the proof. ■ 
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